
Not very different from writing LaTeX/markdown.

I would say the only thing I found uncomfortable at the beginning was I had to enter space to convert 
a command to an unicode character. Although I got used to it pretty fast, but it is proven to be an 
issue in code generation.

1. Since we generally only write linear equations, I don't have to worry about LaTeX env. IHeartLA 
makes typing equations easier and faster. 
2. HeartDown is an excellent tool to share tutorial online -- it highlights the vector dimension and 
variable meaning. And trust me, following all the vectors/matrices/their dims is the hardest part of 
reproducing a paper.

1. no index offset: since I can't do vec[i-1], I had to make a copy of the same vec but shifted one 
index. This is too costly for memory. 
2. constant loop range: I can't compute all physical energy in one go. I had to change vector length to 
make the same code work for different energies. 
3. unicode char in generated code will cause error in compilation (C++ w/ gcc on Linux, and unicode 
is not a part of C++ standard so I assume other compilers will throw errors too).

1. loop range deRnition. It is very important to deRne the summation range in geometry and 
simulation. 
2. index offset. If I want to do a preRx sum, it wouldn't be possible in IHeartLA. And vec[i-1] is 
deRnitely a common access pattern. 
3. block wise addition: for (int i = 0; i < n; i++) mat[i, i] = block, where block is a 2x2 matrix. 
4. save the changes done in web browser editor to local.

1. For C++ backend, there is deRnitely a better way to generate more expressive code. For example, 
convert std::vector of Eigen::VectorXd to Eigen::MatrixXd -- Eigen::MatrixXd is way more standard in 
geometry/simulation and have better performance.
2. Customized loop range. Since IHeartLA supports index wise equation (A_i = b_ix_i), then it makes 
sense to give the loop a range instead of just loop through the whole vector. In geometry/simulation, 
we usually don't need to iterate through the whole vector/matrix due to boundary conditions.
3. I understand the design choice of single letter variable naming convention, and it's good, keep it up 
-- but I would suggest to limit the variable names to only English alphabet letters and numbers. For 
Greek letters, maybe treat Greek letters like other alias LaTeX variables  ("kappa" instead of "κ").

A general comment: note that we actually do not want all the equations written in the paper to be a 
part of the code -- some are impossible to convert to code, and some are just there to demonstrate 
math insights. But when we read the paper, we still want them to be deRned and linked with other 
equations so we can follow them. There should be parsed/visualized only code section in IHeartLA.

I used the generated code to verify energy behavior -- usually we would expect they become stable 
with an energy conserved time integrator. I compared the results with the ground truth and it checked 
out.

Overall it is a good design. It highlights the variables and equations in a friendly way (friendly to all 
kinds of readers TBH), which is the core contribution IMO. Some recent HCI study shows this has 
something to do attention span... 
However, the design of "scope" limits paper writing. I think we would have to segment the equations 
in a logical order so they group under the same reading env.

This content is neither created nor endorsed by Google.

Post-questions for Hea0Down Expe0 Study

1. How di)erent is writing in Hea1Down from writing a paper or web page? *

2. In what ways is it more di=cult? *

3. In what ways is it easier? *

4. Did you run into limitations? *

5. Are there things you wish it did? *

6. Do you have ideas for how to improve it? *

7. How did you use the code it generated? *

8. What risks and beneKts do you see in the reading environment? *

 Forms


