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Fig. 1. An author writes a mathematical document in H❤RtDown. The document’s source contains math written in I❤LA interspersed with prose. H❤Rt-
Down compiles this into a typeset interactive document. Unlike LaTeX or other systems, the math is compiled. This means the author is alerted of static errors
or if symbols are not described in the prose. The result is a rich document that allows readers to investigate math equations and interact with multimedia
generated by running the compiled math.

Scientific documents describe a topic in a mix of prose and mathematical ex-
pressions. The prose refers to those expressions, which themselves must be
encoded in, e.g., LaTeX. The resulting documents are static, even though
most documents are now read digitally. Moreover, formulas must be im-
plemented or re-implemented separately in a programming language in or-
der to create executable research artifacts. Literate environments allow ex-
ecutable code to be added in addition to the prose and math. The code is yet
another encoding of the same mathematical expressions.

We introduce H❤RtDown, a document processor, authoring environ-
ment, and paper reading environment for scientific documents. Prose is
written in Markdown, linear algebra formulas in an enhanced version of
I❤LA, derivations in LaTeX, and dynamic figures in Python. H❤RtDown
is designed to support existing scientific writing practices: editing in plain
text, using and defining symbols in prose-determined order, and context-
dependent symbol re-use. H❤RtDown’s authoring environment assists au-
thors by identifying incorrect formulas and highlighting symbols not yet
described in the prose. H❤RtDown outputs a dynamic paper reader with
math augmentations to aid in comprehension, and code libraries for exper-
imenting with the executable formulas. H❤RtDown supports dynamic fig-
ures generated by inline Python code. This enables a new approach to sci-
entific experimentation, where editing the mathematical formulas directly
updates the figures. We evaluate H❤RtDown with an expert study and by
re-implementing SIGGRAPH papers.
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1 INTRODUCTION
Researching and disseminating scientific ideas relies onwritten com-
munication. Authors interleave prose, mathematical expressions,
and figures when writing on a chalkboard, an email, a blog post,
or an article. For example, computer graphics research frequently
uses linear algebra notation. Reading these static documents is held
back by the need to keep track of a large number of symbol defini-
tions, leading to various proposals for math augmentations [Head
et al. 2022]. Making use of these documents, for trying out ideas,
replicating the results, or follow-up experiments, is held back by
the need to translate formulas to an executable programming lan-
guage. Literate environments address the lack of executability, but
require authors to manually re-write the mathematical formulas as
executable code blocks [Knuth 1984]. Better reading environments
for scientific papers have been proposed (e.g., ScholarPhi [Head
et al. 2021]), but lack a canonical source for necessary metadata
about mathematical symbols (connecting prose about a symbol to
the symbol itself, and disambiguating symbol re-use in different
contexts).
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We introduce H❤RtDown, an open-source document proces-
sor, authoring environment, and paper reader. H❤RtDown sup-
ports reading with math augmentations in a dynamic reading en-
vironment. H❤RtDown supports authoring by identifying incor-
rect math and undescribed symbols in an authoring environment.
H❤RtDown supports experimentation by automatically updating
figures and generating executable code libraries whenever formu-
las are changed. H❤RtDown documents are plain-text files based
on Markdown [Gruber and Swartz 2004], I❤LA [Li et al. 2021] for
compilable formulas, LaTeX for derivations (non-executable math),
and Python for dynamic figures. From a single plain-text source,
H❤RtDown outputs a dynamic paper reader, figures that automat-
ically update as formulas change, and code libraries for accessing
the formulas from all programming languages supported by I❤LA.

We designed H❤RtDown to support existing SIGGRAPH paper-
writing practices (Section 3), based on a dataset of papers published
at SIGGRAPH 2020. H❤RtDown supports interleaving prose with
formulas and derivations, out-of-order symbol definitions, symbol
re-use in different contexts, and automatic matching of symbols
used in I❤LA formulas with those in LaTeX derivations. In do-
ing so, we extended I❤LA to support additional constructs, such
as symbols with LaTeX formatting commands, local functions com-
patiblewith paper-writing conventions, conditional expressions, and
modules with parameters as the unit of structure for executable code
in papers. We evaluate H❤RtDownwith an expert study and by re-
writing SIGGRAPH papers and replacing code in their implemen-
tations with our generated libraries.

2 RELATED WORK
Mathematical and scientific discourse relied heavily on prose and
diagrams until the development of mathematical notation, which
developed over the last 700 years into the one we know today [Ca-
jori 1993; Wolfram 2000]. Contemporary scientific articles, such as
those in computer graphics, are typically a mix of prose, figures,
mathematical expressions, and sometimes pseudocode. The prose
serializes the document and determines the order in which the non-
textual elements (e.g., figures, expressions, and pseudocode) are
presented. Literate programming environments were proposed by
Knuth [1984] as a similar style of document to describe a computer
program. The prose determines the order in which the pieces of
the computer program are presented, rather than the order of ex-
ecution required by the programming language. Knuth’s original
literate programming environment supported math in the prose, as
the prose was compiled with TeX. Notebooks, such as Mathemat-
ica or Jupyter, can also be thought of as a form of literate program-
ming [Arnon 1988; Kery et al. 2018; Rule et al. 2018; Wolfram 1988].
Authors write cells containing either prose and mathematical ex-
pressions or executable code. The executable code must appear in
execution order. (Pluto [Plas 2020] and Observable [Bostock 2017]
are notable exceptions.) Insofar as literate programming is mod-
eled after mathematical papers, H❤RtDown can also be thought

of as a literate environment that automates the generation of exe-
cutable code from formulas and supports prose-determined order-
ing of the mathematical expressions. Formulas can be directly eval-
uated when generating figures, eliminating the difficult and error-
prone coding step.

Many approaches to reactive documents have been proposed (e.g.
[Conlen and Heer 2018; Victor 2011]; see Conlen and Heer [2018]
for a taxonomy). These approaches focus on creating “explorable
explanations” as visualization-heavy interactive web documents.
The underlying computation is hidden from readers. Some of these,
such as Idyll [Conlen and Heer 2018], are also based on Markdown
for ergonomic authoring. In contrast, H❤RtDown is focused on
helping users correctly author, read, and experiment with mathe-
matical formulas in scientific documents.

The Distill journal [Team 2021] and Authorea [Goodman et al.
2017] focus on authoring and publishing scientific articles for the
web with dynamic visualizations. Distill observed that the primary
bottleneck is the effort in producing the content. Nota [Crichton
2021] is a document processor for scientific articles on the web
that supports authoring dynamic reading functionality like sym-
bol descriptions and visualizations. ScholarPhi [Head et al. 2021]
proposed an improved reading interface for scientific paper PDFs,
generating required metadata for math augmentations in a semi-
automated manner from LaTeX. Suggestions were generated us-
ing natural-language processing techniques and verified by hand.
This approach does not distinguish between re-uses of the same
symbol in different contexts. H❤RtDown obtains metadata from
authors directly and generates ScholarPhi-like dynamic reader en-
vironments.

Various math augmentations have been proposed to facilitate un-
derstanding mathematical notation in papers [Alcock and Wilkin-
son 2011; Dragunov and Herlocker 2003; Head et al. 2021, 2022]. In
[Head et al. 2022]’s taxonomy, H❤RtDown’s dynamic reader envi-
ronment generates background, connector, and label annotations.
Penrose [Ye et al. 2020] is a language for automatically generating
mathematical diagrams from notation.

Bonneel et al. [2020] evaluated the state of replicability of com-
puter graphics research. They found that most papers do not pro-
vide code, and many papers that do provide code required modi-
fications to run. They did not investigate reproducibility, whether
the algorithms could be independently re-created. We are also mo-
tivated to improve the replicability and reproducibility of scientific
articles. H❤RtDown verifies the executability of mathematical for-
mulas via the I❤LA compiler and can visualize correctness with
dynamic figures that execute the formulas.

2.1 Compilable Math, Overview, & Limitations of I❤LA
Several programming languages allow users to write executable
code using syntax close to hand-writtenmath, such as Fortran, Fort-
ress [Allen et al. 2005], Lean [deMoura et al. 2015], and Julia [Bezan-
son et al. 2017], each with different intended uses. For example,
Fortress is designed for distributed computations, and Lean is a
proof assistant. Obtaining LaTeX or other formatted text suitable
for including in papers is possible from Fortress, Lean, and Julia.
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Although we could have adopted Fortess or Julia as the compil-
able math language for H❤RtDown, we would have had to modify
their large compiler codebases to support automatic code ordering,
to output latex for more kinds of expressions, to output metadata
for our dynamic reading environment, and to generate modules
with the appropriate execution model. Moreover, they would have
encumbered our evaluation using in-the-wild code not written in
those languages.

Instead, we chose to build on top of the I❤LA programming lan-
guage [Li et al. 2021]. I❤LA allows researchers to write a plain-
text source that visually looks like chalkboard math and compiles
to both executable targets (e.g., Python, C++, Matlab) and typeset-
ting instructions (e.g., LaTeX). I❤LA variables are type checked
and may not be redefined. The following I❤LA example from Li
et al. [2021] computes the closest point 𝑞 to a set of lines in 3D:

I❤LA only supports linear sequences of expressions. It does not
support out-of-order expressions,mathmixedwith prose, local func-
tions, modules, or variable scoping. Nonetheless it is an ideal candi-
date for the foundation of H❤RtDown.We extend I❤LA to achieve
our goals.

3 FORMATIVE STUDY
Our goal is to support authoring, reading, and making use of cor-
rect and reproducible scientific documents with minimal author-
ing overhead. We wish to do this with a plain-text document for-
mat that generates both executable code (as motivated by Li et al.
[2021]) and a dynamic paper reading environment with math aug-
mentations [Head et al. 2022] and figures that update in response
to changes in the math. We aim to achieve this without changing
what authors put in their papers (prose, math, figures, tables) and
with minimal changes to how they write. We refer to this minimal
impact on authors’ preferred paper-writing practices as ecological
compatibility.

To inform our design, we thoroughly analyzed 156 papers from
the SIGGRAPH North America 2020 Technical Papers program1, col-
lecting both quantitative and qualitative observations. Our major
qualitative findings are that:

(I) Prose organizes the document. Mathematical expressions ap-
pear between paragraphs of prose or inline.

(II) Math symbols are often used before they are defined, as de-
termined by the prose.

(III) Symbols may be re-used, but the different context is clear to
the reader.

(IV) A symbol may appear in both derivations and executable for-
mulas.

(V) Symbols and functions may be defined via conditional assign-
ment, a simple form of control flow.

1Therewere 163 total papers, but we could not access 7 PDFs at the time of our analysis.

(VI) Functions make use of a variety of implied semantics for pa-
rameters and pre-computed symbols.

All 156 papers appear to be written using LaTeX, that is, as plain-
text source organized around prose (I) resulting in typesetmath and
a static document (a PDF). Without any requirement of generating
valid, compilable code, or metadata for dynamic document view-
ing, the symbol (II–V) and function (V–VI) management of these
papers falls onto the author, who must strive to maintain clarity
and correctness via the informal context of the document’s prose.

Pseudocode is sometimes present in the papers themselves, but
compilable code almost never is. No paper was written as a literate
program.We don’t want to changewhat authors put in their papers,
so we do not consider literate programming.

Our goal is to formalize and assist an author in creating a docu-
ment where symbols and functions are coherently managed and de-
terministically result in both a compilable code library, metadata af-
fording dynamic reading environments with math augmentations,
and figures generated directly from the formulas. In particular, the
non-linear ordering of expressions via prose (I), use of contexts (III),
and local functions (VI) immediately precludes an attempt to triv-
ially write an entire paper as “one giant I❤LA expression.”

Indeed, local functions are ubiquitous in these papers. Quantita-
tively, we manually observed of the 916 function definitions across
the 156 papers:

96% use parentheses for parameters,
91% rely on implicit parameters,
17% interpret the function’s subscript as parameters,
15% have seemingly unused parameters,
6% are defined via conditional assignment
4% use square brackets for parameters,
2% interpret the function’s superscript as parameters,
2% interpret parameter superscripts as additional parameters.

Examples and our tabulated data can be seen in the supplemental
material. Based on these findings, we extend the grammar and im-
plementation of I❤LA to include support for local functions (Sec-
tion 4.2.1).

4 DOCUMENT DESIGN
As a concrete example, consider the H❤RtDown document for a
mesh smoothing algorithm in Figure 2.This involves an energymin-
imization involving two terms defined in the prose.We describe the
process of writing this example using H❤RtDown and consider a
hypothetical reader’s experience experimentingwithH❤RtDown’s
outputs.TheH❤RtDown document source is shown in Figure 3. In
the appendix (Figures 7–9), we show three other examples: k-means
clustering (with experiments into data weights and k-medians); im-
age convolution with various filters by editing the filter function;
and surface fairing with various Laplacian powers.

4.1 Authoring
Just as in LaTeX or many other Markdown formats, the prose is
written as plain text with occasional markup commands (I). Op-
tional metadata at the top of the file specifies the document title, au-
thors, and abstract (not shown). InH❤RtDown, only non-executable
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Fig. 2. The H❤RtDown reading environment for a mesh smoothing docu-
ment. The reader has clicked on Equation 1 and is shown where the terms
involved are defined. The source for this example can be seen in Figure 3.

mathematical expressions, e.g., derivations or symbol references,
are written in LaTeX format surrounded by $. For example,

↩→

Executable mathematical expressions are written in I❤LA format
either in multi-line code blocks (surrounded by the Markdown con-
vention ```) or inline surrounded by a pair of ❤ ’s. For example:

Authors write I❤LA statements in any order (II). As I❤LA is a
single-static assignment language, we modified the compiler to or-
der I❤LA statements based on def-use analysis [Kennedy 1978].

The I❤LA compiler generates complete type information for all
mathematical symbols that appear in the I❤LA code. This symbol
list and type information are stored in a dictionary that the viewer
uses to generate the glossary. H❤RtDown searches the LaTeX-
formatted mathematical expressions for the same symbols and au-
tomatically generates appropriate annotations for the viewer to lo-
cate appearances of symbols in prose and derivations (IV). H❤Rt-
Down attempts to impose minimal overhead on authors and main-
tain ecological compatibility.

4.2 Overhead
H❤RtDown requires three kinds of additional effort from authors.
First, one appearance of a symbol in the prose deserves special at-
tention: the text defining the symbol. Detecting the span of this

# Mesh Smoothing¬
: MeshSmoothing¬

¬
We consider the problem of smoothing <span class="def">a mesh with vertices $V$ and edges 
$S$</span>. We can express the <span class="def">smoothed vertex positions $U$</span> as a least 
squares problem with a data term and a smoothness term:¬
¬
``` iheartla¬
trace from linearalgebra¬
¬
min_( U  ^(n 3) ) `E_\text{data}`(U) +  `E_\text{smoothness}`(U)¬
where¬
V  ^(n 3): The vertices of the mesh¬
L  ^(n n) sparse: The Laplacian matrix¬
  ¬

```¬
¬
where  `E_\text{data}`(U) =  U - V  where U  ^(n 3)  <span 
class="def:E_\text{data}">measures the change in vertex values,</span> `E_\text{smoothness}`(U) 
= trace( U  L U ) where U  ^(n 3)  <span class="def:E_\text{smoothness}">measures the Laplacian 
smoothness,</span> and the scalar <span class="def">$ $ balances the two terms.</span> Here, 
<span class="def">$L$ is the cotangent Laplacian matrix,</span> which is different from the 
$\proselabel{ImageTools}{L}$ in Section 2.¬
¬
<figure>¬
...¬
<figcaption>Clockwise from upper-left: The input noisy surface, the surface smoothed with $ =.1, 
1, 10$. </figcaption>¬
</figure>¬

Fig. 3. The H❤RtDown source for the mesh smoothing document in Fig-
ure 2. Source for the figure has been removed to save space and can be seen
in the supplemental materials.

prose cannot be accurately automated, so we require authors to an-
notate such spans. In the example above:

↩→

The prose in this span tag is provided to reading environments as
the definition of the symbols 𝑉 and 𝑆 . If symbols do not appear in
the prose definition (as in the definition of 𝐸smoothness), we require
users to specify which symbol is being defined.

Second, I❤LA requires type declarations for all symbols not ap-
pearing on the left-hand side:

Third, authors must declare a context for their symbols:

Later context declarations override earlier declarations. The con-
text disambiguates symbol reuse (III), e.g., “Here, 𝐿 is the cotangent
Laplacian matrix, which is different from the 𝐿 in Section 2.” and
partitions the resulting executable code into modules. We provide
a LaTeX command (\proselabel) and syntax for our <span> tag to
override the current context.

This extra author effort unlocks all the benefits of H❤RtDown
(compilable code libraries, static analysis of paper math, and the
enhanced reading environment).

4.2.1 Functions and Modules. Motivated by our formative study
(Section 3), we extended I❤LA with a syntax for local functions
(VI). In our example above,

Functions can make use of terms defined in the context, such as 𝐿
in this example. Each context becomes an independent module in
the resulting code library. In I❤LA output code, modules are imple-
mented as structs or classes whose fields are all variables defined
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Fig. 4. The H❤RtDown editor for the mesh smoothing document. The ex-
ample from Figure 2 has been modified with a (1−𝜆) term in front of 𝐸data.
The figures update automatically.

in the context. The constructor computes the field values from the
input parameters. Local functions become methods on the struct or
class. We also extended I❤LA to support instantiating and import-
ing symbols from other I❤LA modules.

Splitting a paper into contexts may be necessary due to inten-
tional symbol re-use. Contexts can also organize the functionality
of a paper into smaller units for users who only wish to access a
subset of the paper’s functionality. This prevents users from hav-
ing to provide unnecessary parameters and avoids pre-computing
ultimately unused values.

4.2.2 Figures. H❤RtDown executes Python code blocks, which
allows authors to generate figures programmatically. Authors al-
ready rely on code execution to generate data for figures; in H❤Rt-
Down, the Python code can access the compiled functionality of
the document as a module. During experimentation, changes to the
mathematical formulas are automatically reflected in the figure; au-
thors can skip manually implementing the math in a programming
language. Figures can be also added with any supportedMarkdown
technique, such as directly referencing an image or inserting inter-
active HTML visualizations. In the smoothing example (Figure 2),
the Plotly library generates interactive figures that allow viewers to
inspect the output. In Figure 4, the author experiments with chang-
ing how the weight 𝜆 is used by adding a (1 − 𝜆) term in front of
𝐸data.

4.3 Author Support
H❤RtDown helps authors write correct math and complete prose.
H❤RtDown provides a web-based visual editor (Figure 4) that dis-
plays the document source and output viewer side by side. Error
messages appear whenever the user’s formulas contain incompat-
ible indices, dimensions, or types or erroneous syntax. The editor
displays the I❤LA compiler error message and highlights the ap-
propriate line in the source. When symbols are not described with
prose, they appear with red underlines in the viewer. The output
of Python code that fails to run is displayed inline. Authors can
also edit I❤LA formulas and Python code for figures directly in the

Python-Markdown

(modified)(modified)

I❤LA Compiler

Python
Generate Figures
& Report Errors

Web User Interface

ACE
Editor

Output
HTML

Tornado Web Server

mdx_bib Extension

LaTeX Extension

Citations 
& Derivations

H❤rtDown Extension

Compile I❤LA

Resolve Symbols Extract Figure Code

Assign Contexts

(existing)(existing)

(new)

Fig. 5. H❤RtDown is implemented as a Python-Markdown extension, with
additional modifications to existing extensions to adjust citation style and
support inline LaTeX equation parsing.

viewer-side of the authoring environment. Clicking on either gen-
erates an editing window containing only the relevant code block.

4.4 Reading
H❤RtDown’s dynamic reading environmentmakes use of themeta-
data generated by the compiler to add a glossary and math augmen-
tations [Head et al. 2022]. Figure 2 shows our reader for the mesh
smoothing example. The glossary contents dynamically match the
on-screen context. Users can click on a symbol; color cues identify
all uses of the same symbol and arrows guide readers to the sym-
bol’s definition in context. Users can click on an equation; an in-
line glossary appears and all symbols are highlighted and their def-
initions indicated with arrows. Colors are chosen so that no two
symbols in the same equation will have the same highlight color.
The functionality we support was inspired by ScholarPhi’s reader
[Head et al. 2021]. Some of our design choices leverage the dynamic
nature of the web for e.g., re-flowing the text.

5 IMPLEMENTATION
Figure 5 shows the overall structure of the implementation ofH❤Rt-
Down. In this section, we describe how H❤RtDown makes use of
existing Python libraries (with some modifications) and a modified
version of the I❤LA compiler to produce output for our prototype
viewer, which takes the form of an HTML document with interac-
tivity implemented in JavaScript.

5.1 H❤RtDown Extension of Python Markdown
We developed H❤RtDown based on the open source PythonMark-
down library [pyt 2021], which provides easy-to-use APIs for writ-
ing Markdown extensions. We implemented H❤RtDown as an ex-
tension to Python Markdown, and slightly modified open source
extensions for parsing LaTeX equations and bibliography files. We
added support for inline mathematical expressions by enclosing
them in $ (a single-line change). Meanwhile, the mdx_bib exten-
sion [Darakananda 2015] provides support for R Markdown-style
citations; we modified it to resemble the SIGGRAPH bibliography
style. As part of the H❤RtDown extension, we implement Pandoc-
style YAML headers to specify authors, document title, and abstract.
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Figure 5 shows how theH❤RtDown extension leverages Python
Markdown, modified extensions, and a modified I❤LA compiler to
produce output for our prototype viewer. Given an input Mark-
down source file, H❤RtDown first parses all the context declara-
tions. These are used to infer each symbol’s scope, so that the prose
annotations in the MathJax LaTeX output, the span tags around
symbol definitions in prose, and I❤LA can all omit specifying the
context. Then H❤RtDown concatenates all I❤LA code from the
same context and compiles it into both executable code for the li-
braries and MathJax.

H❤RtDown tracks the source location during this concatena-
tion in order to place the MathJax in the output HTML. At the
same time, H❤RtDown gathers metadata from I❤LA, such as pre-
cise type information for each symbol and the symbol list for each
equation. H❤RtDown then searches for each symbol in the user’s
LaTeX derivations and applies the LaTeX command used by our
MathJax extension so that derivation symbols can be queried uni-
formly. We explored writing a MathML backend for I❤LA, but dis-
covered that browser support for MathML is uneven, so we would
have still relied on MathJax to guarantee correct presentation of
the MathML. H❤RtDown solves a graph coloring problem using a
greedy technique [Liu et al. 2021] to ensure symbols in the same
equation have different colors. These colors are output as JSON
metadata in the HTML.

5.2 Modifications to I❤LA
TheH❤RtDown extension leverages amodified version of the I❤LA
compiler. Our modifications alter both the capabilities of the lan-
guage and the output produced. Since I❤LA already supportsMath-
Jax LaTeX output, we modified it to include the metadata needed
for our paper reading environment as LaTeX commands around
symbols.Thismetadata includes specifyingwhich symbols are used
in each equation, as well as specifying the locations of symbol def-
initions.

We implement twomajor extensions to the I❤LA language. First,
we no longer require that symbol definitions occur before their use;
instead, we implement a simple symbol def-use analysis that re-
orders the code such that all symbol definitions occur before their
uses. This allows us to compile arbitrarily-ordered snippets into a
single I❤LA program. Second, we modify the compiler to support
local functions, which are used frequently in papers. This modifica-
tion required new syntax for specifying such functions, as well as
modifications to the backends to ensure local functions are usable
from clients of the output code.

In addition, we also extend I❤LA’s support for modules. Previ-
ously, the language only supported modules for the purposes of
importing standard library functions such as sin; we extend this
syntax to allow importing from other I❤LA files. Our syntax exten-
sion allows users to specify inputs to an externally-defined module,
which are then used to compute the outputs and make them acces-
sible from the current module. Each context corresponds to a single
file defining a single module.

5.3 Web-based Editor
The web-based authoring GUI displays the editable input source
and output paper reading environment side by side, leveraging an
embeddable code editor [Ajax.org 2022]. The GUI communicates
via POST requests with a server running the Python-based Tornado
web framework and asynchronous networking library to run the
H❤RtDown document processing. To speed compilation, H❤Rt-
Down caches I❤LA code and only re-compiles it when the I❤LA
code has changed (determined via string comparison). When a fig-
ure’s code is changed from the viewer, H❤RtDown only runs that
Python code block.

5.4 Paper Reading Environment
We built our paper reading environment using Javascript for view-
ing in a browser. The paper reading environment uses JSON output
by theH❤RtDown extension to visualize symbol relationships and
enhance the paper reading experience. We leverage MathJax exten-
sions to store information for symbols and equations in the HTML
tags generated by MathJax when displaying LaTeX math. This al-
lowed us to access the symbols in a structured way from JavaScript,
which implements the dynamic, interactive aspects of our reading
environment, and styles the symbols using CSS.

6 EVALUATION
We have extensively evaluated H❤RtDown with case studies re-
writing SIGGRAPH papers in H❤RtDown and evaluating the gen-
erated code libraries, with an expert study to understand how pro-
fessional researchers can make use of H❤RtDown, and with ad-
ditional scenarios demonstrating how editable math facilitates ex-
perimentation. Details of our evaluations are provided in Appen-
dices A and B and in the supplemental materials. We summarize
our findings here.

6.1 Case Studies
With our case studies, we seek to answer (a) whether it is capable
of being used to author papers, (b) how much overhead is required
to rewrite a paper in H❤RtDown, (c) whether the resulting code
library is correct and useful, and (d) what limitations we observed
in practice. To do this, we converted a variety of SIGGRAPH pa-
pers and paper sections to H❤RtDown. Our criteria for selecting
papers were that they use linear algebra implementable by I❤LA,
while ensuring we cover a variety of topics in graphics. The pa-
pers are from the past five years (2017–2021) of SIGGRAPH and
span geometry processing, image processing, visualization, simula-
tion, and rendering. To evaluate (c), for papers with accessible exist-
ing implementations, we replacedmanually-written codewith calls
to our automatically generated libraries. We describe this process
case-by-case in Appendix A.

Replicability for research papers is not a new problem [Bonneel
et al. 2020]. Out of the 14 papers we reimplemented (5 full papers
and 9 papers for which we implemented single subsections), we
only found code online for 7 of them. Among these, 4 are from
the paper authors and 3 are third-party implementations. We use
the library generated by H❤RtDown to replace functions in the
original code for each of these 7 examples, and use input examples
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to verify that the results match. The equations we wrote in H❤Rt-
Down don’t always have corresponding implementations in the
original code; we only checked equations with implementations.
Please refer to Appendix A for details about each case study and
the supplemental materials for the original and the replaced source
code; here we only summarize our results.

Overall, we verified 15 equations across the 7 case studies; for
5 of the studies, we generated C++ libraries, and for the other two,
we generatedMATLAB code. In several cases, we needed to slightly
modify the way equations were written in the paper. For example,
we separated out re-definitions into separate contexts (e.g., when
the equation is defined with the same name for both 2D and 3D), or
added variables to turn equations without assignments (i.e., with-
out left hand sides) into callable I❤LA code. In one case, we needed
to add an additional parameter to an equation due to I❤LA lack-
ing support for computing partial derivatives. Overall, we see that
H❤RtDown enables paper authors to leverage our modified ver-
sion of I❤LA to produce code libraries from the same source that
generates the paper, vastly improving replicability by building it
into the paper authoring and reading process.

6.2 Expert Study
We conducted an asynchronous expert study to understand how ac-
tive researchers can make use of H❤RtDown and the executable
code it generates. We recruited 3 computer science PhD students
to author an original document related to their computer graphics
research.They spent a total of 24, 7, and 6 hours, respectively, using
H❤RtDown over a period of two weeks. Participants were given
initial and follow-up questionnaires to understand their current
practices and share their thoughts about H❤RtDown. A longer de-
scription of our study’s results can be found in Appendix B. Our
study protocol was approved by our university’s ethics board. In-
formed consent was obtained from all participants.

Our pre-study questionnaire asked about current research pro-
cesses. The experts wrote that initial discussions involve handwrit-
ing on a real or virtual surface (like a whiteboard or drawing soft-
ware) followed by formalizing ideas mathematically (possibly in
LaTeX or Markdown). Finally, they implement the ideas in code.
The experts observed that converting mathematical formulas to ex-
ecutable code is much more difficult than writing the math itself;
one noted that the process is also error-prone.

The H❤RtDown documents the participants wrote can be seen
in our supplemental materials. In our protocol, participants concep-
tualized their documents outside of H❤RtDown. If I❤LA didn’t
support the notation in the document, we either added support or
discussed changes to the formulas with participants. Then, partici-
pants used H❤RtDown to write the documents. Two participants
used Python and one used C++ to test and verify the correctness of
the generated library.

At the conclusion of the study, we sent participants a follow-up
questionnaire. Two participants appreciated that writing in H❤Rt-
Down is similar to writing Markdown. Two commented that writ-
ingmath in I❤LA is harder thanwithMarkdown/LaTeX, since they
were unfamiliar with the language, while the third stated that it
was easier. One commented that the generated code compensates

for the additional time spent writing the equations. This partici-
pant wanted a way to convert existing files to H❤RtDown doc-
uments. All participants liked the dynamic reader features. One
participant commented, “H❤RtDown is an excellent tool to share
tutorial[s] online—it highlights the vector dimension and variable
meaning…following all the vectors/matrices/their dims is the hard-
est part of reproducing a paper.”

Most of the limitations they encountered were due to I❤LA lan-
guage limitations, such as limitations around summation ranges.
We fixed the cosmetic usability problems raised by the participants,
like stale information being shown when an error occurs. We plan
to address limitations in I❤LA functionality. Since our goal is for
H❤RtDown to be adopted by researchers, user feedback will guide
development efforts.

7 CONCLUSION
We have demonstrated that H❤RtDown is a low-overhead, eco-
logically compatible document processor that supports authors and
improves replicability, readability, and experimentation.We re-wrote
a variety of papers in computer graphics and obtained implementa-
tions of key formula in multiple programming languages virtually
for free. In our expert study, participants found uses for H❤Rt-
Down in their research practice. The tutorial written by one expert
became a dynamically annotated document generating with canon-
ical executability available in multiple programming environments.

Limitations and Future Work. One limitation of H❤RtDown is
that it does not consider pseudocode, literate programming, or al-
gorithmic steps described in prose. Algorithms are often needed to
make formulas useful. Without them, significant scaffolding may
still be needed beyond the code H❤RtDown generates.This can be
seen in our procedural figure examples. We would like to explore
mechanisms for corresponding pseudocode and procedural descrip-
tions with scaffold code. We believe that H❤RtDown would al-
ready be useful for literate programs, which can focus on scaffold-
ing rather than re-writing the formulas.

Another limitation stems from the kinds of formulas that our
extended version of I❤LA can handle. We have focused on formu-
las appearing in computer graphics venues, but the space of exe-
cutable math and potential application domains for H❤RtDown
is much broader than linear algebra or computer graphics. Authors
sometimes adopt unusual notational practices that are nevertheless
understandable by readers. For example, functions that make use
of their parameters’ subscripts as parameters in their own right
(Figure 6). Another example is symbol re-definition, which may oc-
cur when re-defining a symbol approximately or when building to
a more complex definition. Although readers can typically arrive
at the correct interpretation without too much difficulty [Gane-
salingam 2013], unusual notation poses a problem when attempt-
ing to formalize existing practice.

In the future, wewould like to explore automatic or semi-automatic
conversion from LaTeX to H❤RtDown. Extending I❤LA to sup-
port non-compilable, display-only math would allow authors to
write all of their math in I❤LA, rather than a mix of I❤LA and
LaTeX. Incorporating a proof checker [de Moura et al. 2015; Skři-
van 2022] could allow the verification of derivations.Wewould also
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like to explore callbacks and delegates for expanding the abilities of
the generated code. We would also like to improve our reading en-
vironment to support active reading activities such as annotating
and comparing [Tashman and Edwards 2011].
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A CASE STUDIES
The papers used in our case studies are listed in Table 1. For each
paper, the supplemental materials displays the H❤RtDown source
file, H❤RtDown’s generated paper reading environment, andH❤Rt-
Down’s generated code library for C++, Python, andMATLAB.We
also provide a link to the original paper for comparison and side-by-
side screenshots. For papers with implementations, we link to the
original source code and the modified code that calls our output.

Case Study 1: Iterative Closest Point. This code is written by the
author in C++.The paper describes several energy objectives which
we re-wrote in H❤RtDown. Equations 10 and 11 contain the solu-
tion of the least-squares problem. In the paper, Equation 11 is a free
expression. In order to access its value in the code library, we mod-
ified Equation 11 by creating a symbol and defining it equal to the
expression. We then modified the code to call our generated library
and verified the equivalence.

Parentheses for
parameters 

[Ni et al. 2020]

[Lan et al. 2020]Implicit parameters

Unused
parameters 

[Ma et al. 2020]

Conditional
assignment 

[Kim et al. 2020]

Function subscripts
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Square brackets for
parameters 

[Chiu et al. 2020]

Function superscripts
are parameters 

[Lessig 2020]

Parameter superscripts
are parameters 

[Jiang et al. 2020]

Fig. 6. Examples of local functions from our quantitative study.

Table 1. SIGGRAPHpapers we entirely or partially re-wrote inH❤RtDown.
Papers with an asterisk had implementations available, which we used for
our comparisons. The right-most column displays the total number of I❤LA
equation lines and, in parentheses, the number of I❤LA blocks and the
number of inline I❤LA formulas.

Case Source Type #Lines (#B/#I)
1 Schroers et al. [2018] Paper 18 (13/4)
2 Rusinkiewicz [2019] Paper(*) 11 (11/5)
3 Krajancich et al. [2021] Paper 11 (9/3)
4 Chapiro et al. [2019] Paper(*) 8 (8/0)
5 De Goes and James [2017] Paper(*) 7 (7/0)
6 Chen et al. [2020] Section 16 (6/0)
7 Kim et al. [2019] Section(*) 12 (9/3)
8 Pillwein et al. [2020] Section 5 (5/0)
9 Denes et al. [2020] Section 5 (4/0)

10 Smith et al. [2018] Section(*) 4 (4/2)
11 Xiao et al. [2018] Section 4 (4/0)
12 Lukáč et al. [2017] Section 4 (3/0)
13 Günther et al. [2017] Section(*) 3 (3/2)
14 Aksoy et al. [2017] Section(*) 1 (1/0)

Case Study 2: Judder Perception. The authors released MATLAB
code to calculate their judder model. Because the symbol 𝐹𝑎 is used
on both the left hand side of Equation 4 and as a parameter on
the right hand side of Equation 6, we used different context names
when writing them in H❤RtDown. Equations 1, 7, and 8 had corre-
sponding implementations in the source code. The latter two equa-
tions defined two local functions which were used in Equation 1.
Our modified I❤LA compiler correctly analyzed these dependen-
cies and inferred the correct ordering. We implemented the three
equations and verified that our MATLAB output matched the orig-
inal.

Case Study 3: Regularized Kelvinlets. This code is from the libigl li-
brary [Jacobson et al. 2018], written in C++. Libigl implemented the
3D regularized Kelvinlets for Equations 6, 15, 16, and 17 in the pa-
per. Equation 6 defined a regularized Kelvinlet and the other three
defined twisting, scaling, and pinching types, respectively. We im-
plemented and verified all four equations. We modified Equation 6,
which contained both a derivation and a formula (two equals signs)
We also replaced 𝑞 × 𝑟 in Equation 15 by 𝐹𝑟 since the prose in the
paper established the equivalence and the implementation in libigl
actually used 𝐹𝑟 directly.

Case Study 4: Flow Visualization. The authors released code writ-
ten in C++. We rewrote Section 4 in H❤RtDown and implemented
Equation 17. The equation defined a 2 × 6 matrix 𝑀 in 2D. The ma-
trix 𝑀 also relied on variables 𝑥𝑝 and 𝑣𝑝 which were defined as
inline I❤LA blocks in the prose following the equation.

Case Study 5: Anisotropic Elasticity. There is a MATLAB imple-
mentation from the author to verify the eigenpairs derived for 𝐼5.
We rewrote Section 4.1 in H❤RtDown. We modified Equations 5,
7, and 8 to make them assignment expressions. We verified the 3D
Hessian matrix in Equation 7. Its definition relies on a matrix 𝐴
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defined inline in the prose between Equations 5 and 6. The section
included equations for both 3D and 2D scenarios. We used different
context names to separate them.

Case Study 6: Soft Color Segmentation. We were unable to find
code written by the original author, but discovered an implementa-
tion in C++ on GitHub [V-Sense 2020]. We rewrote Section 3 of the
paper in H❤RtDown and verified Equation 4 by showing the re-
sults were equivalent to the existing implementation. The equation
defined a sparse color unmixing energy function based on multiple
parameters. We wrote parameter 𝐷 as a sequence of functions in
I❤LA. Terms in Equation 4, such as 𝛼 and 𝑢, appear in derivations.
H❤RtDown tracks this symbol usage, making the derivations eas-
ier to follow.

Case Study 7: Stable Neo-Hookean Flesh Simulation. The code is
from a GitHub repository [Zhang 2021] not by the original authors.
We rewrote Section 4.2 in H❤RtDown and implemented Equations
18 and 19 in I❤LA. We verified only Equation 19 which defined the
cofactor matrix. The implementation of Equation 18 in the original
code was different from the paper so we were unable to verify it.
While Equation 18 should be a local function with a single parame-
ter 𝐹 , we defined it instead in terms of 𝐹 and 𝜕𝐽

𝜕𝐹 , since I❤LA does
not support partial derivatives.

A.1 Authoring Overhead
Without access to existing LaTeX sources, we copied-and-pasted
prose and wrote mathematical expressions in either LaTeX (for
derivations) or I❤LA (for executable formulas). Writing any given
mathematical equation in I❤LA is similar in difficulty to writing it
in LaTeX, save for the additional effort needed to explicitly declare
the types of all parameters and import symbols or functions from
external modules. When writing in H❤RtDown, we try to use the
fewest contexts possible. In some cases, we can generate a single
module for all symbols if one context can handle the entire paper or
section. We use a new context only when symbols are defined mul-
tiple times or when the prose clearly indicates a new context is re-
quired (e.g., having separate 2D and 3D cases).The aim of rewriting
papers in H❤RtDown is to demonstrate that H❤RtDown handles
all components of a technical paper: the title, the authors, the ab-
stract, the figures, the equations, the citations and references. Thus,
we don’t strive for identical typesetting to the original paper, and
omit details such as whether symbols are bold or not. Since H❤Rt-
Down has detailed type information, a viewer could style the sym-
bols automatically by, e.g., displaying matrix symbols in bold and
marking vectors with arrows on top.

As H❤RtDown automatically finds all uses of an I❤LA symbol
in LaTeX, the overhead for labeling uses of symbols is non-existent.
However, symbol definitions are often described with prose. For
example, “Thematrix𝑉 ∈ R𝑛×3 contains vertex positions”. Authors
must label this span of relevant prose as a definition.

The two largest sources of overhead are correctly specifying the
types of parameters (necessary for executable code) and labeling
spans of prose as definitions (extremely beneficial for readers). We
claim that this overhead would be smaller for the original authors
whenwriting a paper than for uswhen re-writing.We had to search

the prose carefully, whereas the original authors would have di-
rectly known the types and definition locations.

B EXPERT STUDY
We conducted an asynchronous expert study to understand how ac-
tive researchers can make use of H❤RtDown and the executable
code it generates. We recruited 3 researchers whose work involves
writing up descriptions of linear algebra formulas. Participants used
H❤RtDown to author an original document related to their re-
search. The experts spent a total of 24, 7, and 6 hours, respectively,
using H❤RtDown over a period of two weeks. Participants were
given initial and follow-up questionnaires to understand their cur-
rent practices and share their thoughts about H❤RtDown, respec-
tively. Our study protocol was approved by our university’s ethics
board. Informed consent was obtained from all participants.

Our three experts were computer science PhD students noin-
line]undergrad? “current or incoming” from two universities, all of
whomwork in the area of computer graphics. In our pre-study ques-
tionnaire, we asked participants eight questions to elicit descrip-
tions of their research processes from initial discussions to mathe-
matical formalization to implementation for experimentation. The
experts wrote that initial discussions often involve handwriting on
a real or virtual surface (like a whiteboard or drawing software).
Experts then formalize their ideas mathematically (possibly in a
LaTeX or Markdown document—participants were familiar with
both). This formalization may include implementation details and
variables. Finally, they implement the ideas in code to test the for-
mulas. The participants reported sometimes writing math in mes-
sages software (Slack, Discord, and email), though they lamented
the difficulty of writing math. The experts all observed that con-
verting mathematical formulas to executable code is much more
difficult than writing the math itself. Two experts estimated 2–4
and 2–5 times as long, respectively. The third noted that the pro-
cess is also error-prone: “First, it highly depends on how detailed
the authors have documented the discretized version of those equa-
tions in the paper/supplementary material. Second, even if [they]
are well-documented, it still takes a long time to implement them in
C++ (Eigen). And it is very easy to make mistakes/typos in this pro-
cess. I would say it varies from one week to three months to get all
equations in one paper correctly implemented in C++, depending
on the complexity of the physical model.”

One researcher wrote a tutorial about physical simulation (elas-
tic rods), one wrote about hand-object intersection, and one wrote
about relationships between line segments for 3D modeling. The
H❤RtDown documents they wrote can be seen in our supplemen-
tal materials. In our protocol, participants conceptualized their doc-
uments outside of H❤RtDown. This is compatible with partici-
pants’ self-described research process. Participants sent us their
proposedwritten documents in conceptual form (for example, a pic-
ture of a whiteboard with the proposed math). If I❤LA didn’t sup-
port the notation in the document, we either added support or dis-
cussed changes to the formulas with participants. For example, one
participant wrote sequence indices as superscripts and one wrote
a summation over elements in a set. Then, the participants wrote
their documents using H❤RtDown. noinline]It would be nice to
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say something about the size of these documents in terms of num-
ber of lines or number of equations or size of library or etc etc
As these documents were related to participants’ research projects,
they were all able to test and verify the correctness of the generated
library. Two participants used Python and one used C++.

At the conclusion of the study, we sent participants a follow-
up questionnaire consisting of eight questions about H❤RtDown.
Two participants appreciated that writing in H❤RtDown is similar
to writing Markdown. Two commented that writing math in I❤LA
is harder than with Markdown/LaTeX, since they were unfamil-
iar with the language, while the third stated that it was easier. La-
TeX also has a particular syntax, but participants are more familiar
with it. Moreover, LaTeX is more forgiving since it doesn’t check
the consistency of the math. One commented that the generated
codemakes compensates for additional time spentwriting the equa-
tions. This same participant wanted a way to convert existing files
(LaTeX/Markdown/handwriting scans) toH❤RtDowndocuments.

All participants liked the dynamic reader features.The glossary pro-
vided convenient access to descriptions, and the highlighting and
arrows and math augmentations) that related symbols in math to
the definition in prose. One participant commented, “H❤RtDown
is an excellent tool to share tutorial online—it highlights the vec-
tor dimension and variable meaning. And trust me, following all
the vectors/matrices/their dims is the hardest part of reproducing
a paper.”

Most of the limitations they encountered were due to I❤LA lan-
guage limitations, such as limitations around summation ranges.
We fixed the cosmetic usability problems raised by the participants,
like stale information being shown when an error occurs and the
location of saved files. We plan to address limitations in I❤LA func-
tionality. Since our goal is for H❤RtDown to be adopted by re-
searchers, user feedback will guide development efforts.

C EXAMPLE DOCUMENTS WITH FIGURES
See Figures 7–9.
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Fig. 7. Left: k-means clustering with outliers in the four corners. Middle: By changing to the 𝐿1-norm, we obtain k-medians clustering robust to outliers.
Right: Modifying the 𝐿2-norm formula with weights, and assigning 𝑤𝑖 = 1

2 to the outliers mitigates their influence.

Fig. 8. Left: Convolving with a box function leads to ringing artifacts. Middle: Changing the filter function to a triangle filter leads to a higher-quality result.
Right: A quadratic approximation of the Gaussian does not noticeably improve the smoothing quality.

Fig. 9. Left: Fairing the middle of a bent cylinder with by solving a Laplace equation minimizing surface area. Middle: Squaring the Laplacian minimizes the
thin-plate bending energy. Right: The cubic Laplacian minimizes the variation of curvature.
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