
I❤MESH: A DSL for Mesh Processing
YONG LI, South China University of Technology, China and George Mason University, USA
SHOAIB KAMIL, Adobe Research, USA
KEENAN CRANE, Carnegie Mellon University, USA
ALEC JACOBSON, University of Toronto and Adobe Research, Canada
YOTAM GINGOLD, George Mason University, USA

I️MESH️

…

.py

.cpp

.tex

c = ∑_(v ∈ V) p_v / |V|

center of mass (point cloud)

K(i) = 2π - ∑_(f ∈ Faces(i)) θ_i,f
where i ∈ V

Gaussian curvature (triangle mesh)

J_t(x,x̄) = A B ¹
where t ∈ T, x_i ∈ ℝ³,
i, j, k, l = Vertices(t),
A = [x_j-x_i x_k-x_i x_l-x_i],
B = [x̄_j-x̄_i x̄_k-x̄_i x̄_l-x̄_i]

deformation gradient (tet mesh)

Fig. 1. I❤MESH enables rapid exploration of mesh processing algorithms by providing a nexus between high-level math-like notation and compilable code.

Mesh processing algorithms are often communicated via concise mathemat-
ical notation (e.g., summation over mesh neighborhoods). However, conver-
sion of notation into working code remains a time consuming and error-
prone process which requires arcane knowledge of low-level data struc-
tures and libraries—impeding rapid exploration of high-level algorithms.
We address this problem by introducing a domain-specific language (DSL)
for mesh processing called I❤MESH, which resembles notation commonly
used in visual and geometric computing, and automates the process of con-
verting notation into code. The centerpiece of our language is a flexible no-
tation for specifying and manipulating neighborhoods of a cell complex, in-
ternally represented via standard operations on sparse boundary matrices.
This layered design enables natural expression of algorithmswhile minimiz-
ing demands on a code generation back-end. In particular, by integrating
I❤MESH with the linear algebra features of the I❤LA DSL, and adding sup-
port for automatic differentiation, we can rapidly implement a rich variety
of algorithms on point clouds, surface meshes, and volume meshes.

CCS Concepts: • Computing methodologies→ Mesh geometry mod-
els; • Mathematics of computing → Mathematical software; • Soft-
ware and its engineering→ Domain specific languages.

Authors’ addresses: Yong Li, South China University of Technology, China and
George Mason University, USA, pressure36@gmail.com; Shoaib Kamil, Adobe Re-
search, USA, kamil@adobe.com; Keenan Crane, Carnegie Mellon University, USA,
kmcrane@cs.cmu.edu; Alec Jacobson, University of Toronto and Adobe Research,
Canada, jacobson@cs.toronto.edu; Yotam Gingold, George Mason University, USA,
ygingold@gmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0730-0301/2024/0-ART0
https://doi.org/XX.YYYY/ZZZZZZZ.WWWWW

Additional Key Words and Phrases: meshes, geometry processing, domain-
specific language

ACM Reference Format:
Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold.
2024. I❤MESH: A DSL for Mesh Processing. ACM Trans. Graph. 0, 0, Arti-
cle 0 ( 2024), 17 pages. https://doi.org/XX.YYYY/ZZZZZZZ.WWWWW

1 INTRODUCTION
Geometry processing algorithms entail evaluating or optimizing
quantities aggregated overmesh elements. In scientificwriting, such
algorithms are typically expressed as a mixture of mathematical no-
tation and verbal/rhetorical descriptions. For instance, the area 𝑎𝑣
associated with a vertex 𝑣 of a triangle mesh might be defined by
writing “Let 𝑎𝑣 = 1

3
∑

𝑓 ∈N(𝑣) Area(𝑓 ), where Area(𝑓 ) is the area of
triangle 𝑓 andN(𝑣) is the collection of triangles containing vertex 𝑣”.

To turn this definition into code, one must then carefully trans-
late each term and definition into expressions from a given pro-
gramming language and/or library. Even within a single language
(say, C++) there are numerous libraries, each with its own idiosyn-
cratic interface [Bischoff et al. 2002; Fabri and Pion 2009; Jacobson
et al. 2018; Sharp et al. 2019a; Sieger and Botsch 2019]. Hence, al-
gorithm exploration is slow, and achieving consistent, bug-free ex-
ecution across different platforms is a daunting task.

Similar challenges in the context of numerical linear algebrawere
recently addressed by the I❤LA DSL [Li et al. 2021, 2022]. Unlike
linear algebra, however, formulas found in geometry processing
are not purely arithmetic; they must also reference topological data
structures (point clouds, polygonal surface meshes, polyhedral vol-
umemeshes, etc.), which have no universally agreed upon notation.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.

HTTPS://ORCID.ORG/0000-0002-7597-1464
HTTPS://ORCID.ORG/0000-0001-5965-3717
HTTPS://ORCID.ORG/0000-0003-2772-7034
HTTPS://ORCID.ORG/0000-0003-4603-7143
HTTPS://ORCID.ORG/0000-0002-5381-2104
https://orcid.org/0000-0002-7597-1464
https://orcid.org/0000-0001-5965-3717
https://orcid.org/0000-0003-2772-7034
https://orcid.org/0000-0003-4603-7143
https://orcid.org/0000-0002-5381-2104
https://doi.org/XX.YYYY/ZZZZZZZ.WWWWW
https://doi.org/XX.YYYY/ZZZZZZZ.WWWWW


0:2 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

Moreover, although authors occasionally provide rigorous defini-
tions for these data structures and their local neighborhoods (e.g.,
the star/link/closure formalism for a simplicial complex), more of-
ten they are left undefined. Authors hence rely on readers to in-
terpret notation based on a common cultural context, perhaps in
conjunction with annotated figures (Section 3). (See Section 5 for
an in-depth study of generality, composability, and syntax in the
context of mesh processing DSLs.)

In response to these challenges, I❤MESH provides a translation
layer between higher-level notation and lower-level implementation—
formalizing and automating the ad-hoc translation process currently
performed by expert readers (Figure 1). In particular, it modelsmeshes
as cell complexes [Hatcher 2002, Chapter 0], which are internally
represented via sparse boundarymatrices [Elcott and Schröder 2005;
Friedman 2012]. Users of I❤MESHexpressmesh operations in terms
of math-like syntax, and can define custom mesh stencils/neigh-
borhoods in terms of cellular sets, i.e., heterogeneous collections of
mesh elements, encoded by sparse vectors. These expressions are
then compiled to routines in a general-purpose host language (e.g.,
C++), which can in turn be invoked within, e.g., a larger graphics
or geometry processing codebase. We provide a standard library of
neighborhoods for a variety of topological data structures, demon-
strating that this approach is versatile enough to cover many com-
mon use cases.We also implement a variety of geometry processing
algorithms (Section 7) which demonstrate how to use the system in
an end-to-end fashion.

I❤MESHextends I❤LA into a languagewe callH❤ rtLang, adding
support for mesh-specific types, operations, and quantities, as well
as derivatives of these quantities. To support these features, we
add a wide variety of basic language features: better set handling
(including set builder notation and type-checking based on inclu-
sion in a specific element set), more functional programming con-
structs, recursive functions, type-based function overloading, and
automatic differentiation. We also introduce syntax and semantics
common in mathematical notation, such as function parameters ex-
pressed as subscripts, and locally scoped variable definitions. Sup-
port for a given host language requires minimal effort: an imple-
mentation of cellular sets via sparse linear algebra, plus a few ele-
mentary operations (e.g., translation between cellular sets and in-
dicator vectors). Source code and documentation for I❤MESH can
be found at https://github.com/iheartla/iheartla.

Note that our goal in this paper is primarily to explore language
design for mesh processing. For this reason, performance is a non-
goal of I❤MESH, and there are many opportunities for acceleration
(including, perhaps, compiling to high-performance backends like
SimIt [Kjolstad et al. 2016] orMeshTaichi [Yu et al. 2022]). To main-
tain a concise, domain-specific language, procedural logic (e.g., for
expressing optimization algorithms) is also out of scope and is in-
stead handled by the general-purpose host language. Finally, we
do not consider mutations of the topological data structure (e.g.,
edge flips), which present future interesting questions—and could
also in principle be implemented via the boundary matrix abstrac-
tion [Shapero 2023].

2 RELATED WORK
Mesh Data Structures. A cornucopia of mesh data structures has

been proposed over the years with varying performance character-
istics and representational flexibility. One class of representations
are generalizations of linked lists, including half-edge [Bischoff et al.
2002; Campagna et al. 1998; Kettner 1998; Lienhardt 1994; Mäntylä
1989;Muller and Preparata 1978], quad-edge [Guibas and Stolfi 1985]
and winged-edge [Baumgart 1972]. These data structures are based
on pointer-following to access and enumerate neighbors. While
theoretically efficient, operations involving these data structures
are highly sequential in nature. Instead, we base I❤MESHon declar-
ative paradigms, boundary matrices and cellular sets, where many
mesh operations can be expressed in conventional mathematical
notation.

Many mesh processing libraries have been proposed over the
years, such as CGAL [Fabri and Pion 2009], OpenMesh [Bischoff
et al. 2002], libigl [Jacobson et al. 2018], Geometry Central [Sharp
et al. 2019a], and the Polygon Mesh Processing library [Sieger and
Botsch 2019].Those libraries are extremely powerful due to the var-
ious built-in algorithms they provide.These libraries are all written
in C++, though some have beenwrapped for use in other languages.
However, a design goal for I❤MESH is to generate code with mini-
mal dependencies, allowing authors towrite portablemesh process-
ing expressions that compile to any supported backend. We make
use of some of these libraries for file I/O in our example applica-
tions.

Boundary matrices have been proposed as an elegant represen-
tation for simplicial and cellular complexes [DiCarlo et al. 2014;
Edelsbrunner and Harer 2008; Elcott and Schröder 2005; Kaczyn-
ski et al. 2004]. These approaches represent mesh connectivity as a
collection of sparse matrices; incidence relationships are revealed
by matrix multiplication. DiCarlo et al. [2014] proposed the Lin-
ear Algebraic Representation (LAR) representation for meshes and
studied the theoretical storage and runtime efficiency using com-
pressed sparse row (CSR) matrices for unoriented meshes.Three re-
cent approaches focused on adapting sparse boundary matrix mesh
representations for efficient use on the GPU. Zayer et al. [2017]
proposed a particular sparse matrix encoding that makes orienta-
tion information efficient to extract. Mueller-Roemer et al. [2017]
proposed a custom sparse matrix encoding that is more compact
and efficient for running on the GPU. RXMesh [Mahmoud et al.
2021] generalizes the “think like a vertex” [McCune et al. 2015]
GPU programming model to all three types of triangle mesh ele-
ments (vertices, edges, and faces). They propose a custom sparse
matrix encoding that is compact and captures orientation informa-
tion.They decompose the mesh into patches with overlap for better
locality. I❤MESH, too, leverages sparse matrices as the fundamen-
tal building block for mesh connectivity, since they require only
sparse matrices for their implementation, which are already sup-
ported by H❤ rtLang across all backends. The only extra support
needed are functions to create an indicator vector from a set of in-
dices and vice versa. See the supplemental materials for a collection
of examples.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.

https://github.com/iheartla/iheartla


I❤MESH: A DSL for Mesh Processing • 0:3

Mesh Processing DSLs. Several domain-specific languages (DSLs)
have been proposed for meshes. Ebb [Bernstein et al. 2016] pro-
posed a three-layer architecture for physical simulation on CPUs
and GPUs by separating simulation code, data structures for geo-
metric domains, and runtimes. Simit [Kjolstad et al. 2016] supports
both graph and matrix views of the simulation. The data model
uses hypergraphs and tensors as two abstract data structures. Oper-
ations such as tensor assemblies and index expressions can be built
upon them. More recently, MeshTaichi [Yu et al. 2022] was pro-
posed as a high-level programming model for efficient mesh-based
operations. It uses reference-style neighborhood queries to hide the
complex indexing system.The compiler partitions the inputmeshes
and prepares the relations via inspecting the code during compile
time. In contrast to these DSLs, I❤MESH focuses on building an
expressive, extensible language similar to conventional notation.
High performance is not a goal. In the future, the I❤MESH compiler
could target these other languages. See Section 5 for an in-depth
characterization of the design space of mesh processing DSLs in
graphics.

There is a large body of work in scientific computing concerned
with DSLs for expressing and solving partial differential equations
(PDEs) over regular grids (e.g., Devito [Lange et al. 2016], Firedrake
[Rathgeber et al. 2016], and ExaStencils/ExaSlang [Lengauer et al.
2020]) and irregular meshes (e.g., Liszt [DeVito et al. 2011], FEniCS
[Baratta et al. 2023], PyOP2 [Rathgeber et al. 2012], and HighPer-
Meshes [Alhaddad et al. 2022]). Devito [Lange et al. 2016] utilizes
the SymPy [Meurer et al. 2017] package to generate optimized par-
allel C code from high-level symbolic operators defined for finite
differences. Firedrake [Rathgeber et al. 2016] and FEniCS [Baratta
et al. 2023] automate the numerical solution of PDEs via the finite
element method. It separates the local discretization of mathemati-
cal operators from their parallel execution over the mesh. Both rely
on a high-level DSL for expressing finite element discretizations
[Alnæs et al. 2014]. ExaStencils/ExaSlang [Lengauer et al. 2020]
support advanced multigrid solver generation with four layers of
abstraction ranging from the formulation in continuous mathemat-
ics to a full, automatically generated implementation. Liszt [DeVito
et al. 2011] is designed to build portable mesh-based PDE solvers. It
applies program analysis to determine the appropriate stencil and
track field phases. PyOP2 [Rathgeber et al. 2012] portably applies
numerical kernels in parallel over an unstructured mesh. PyOP2
treats all mesh entities as sets, with kernels written in a subset
of C99. HighPerMeshes [Alhaddad et al. 2022] supports a number
of heterogeneous platforms with a C++-embedded DSL that relies
on template metaprogramming. These systems all focus on solving
PDEs while taking efficient advantage of compute resources (via
advanced solvers, memory layout efficiency, and parallelism). In
contrast, we are concerned with flexibly expressing the mesh ex-
pressions and neighborhoods common in the computer graphics
literature. Implementing or interfacing with PDE solvers is out of
scope for our work.

Math Notation Languages. A variety of programming languages
have been proposed with varying emphasis on syntax resembling
conventionalmathematical notation. Fortran,MATLAB,Mathemat-
ica, Fortress [Allen et al. 2005], Lean [de Moura et al. 2015], Julia

  denotes the set of 
adjacent vertices of 

Nj
pj

[Brunel et al. 2021]

[Habermann et al. 2021] is the -ring neighborhood 
of the graph node k

NR(k) R

 denotes the neighborhood 
set of vertex 

Ai
vi ∈ V

 are the tetrahedral cells 
adjacent to the vertex 

Ci
i

 defines the patches 
neighboring 

N(p)
p

 and  are the two 
segments adjacent to 

prev(i) next(i)
si

 is the set of faces 
incident to the vertex  
N(v)

v

 and  are triangles 
adjacent to edge 

t1 t2
e

[James 2020]

[Chandran et al. 2022]

[Song et al. 2020]

[Campen et al. 2019]

[Stein et al. 2020]

[Zhang et al. 2020] 

Fig. 2. Mesh-based expressions from SIGGRAPH papers 2019–2022. The
formulas involve neighborhoods defined verbally, shown at left.

[Bezanson et al. 2017], and I❤LA [Li et al. 2021]. We chose to build
I❤MESH on I❤LA for several reasons. First, its syntax is closer to
conventional notation than the others (including juxtapositionmul-
tiplication, def-use analysis for automatic code ordering, and Uni-
code operators). Second, it is run-time agnostic. I❤LA can generate
codewithminimal dependencies formultiple backends (C++/Eigen,
Python/NumPy/SciPy, MATLAB). I❤LA and its backends already
support the sparse linear algebra we require. Third, it outputs La-
TeX for aesthetic typesetting of user’s expressions. Lastly, its source
code is small and open source.

3 BACKGROUND

We conducted a study to understand how the computer graphics
community communicates mesh-based expressions, i.e., quantities
expressed in terms of the discrete elements of a mesh (such as ver-
tices or edges), and values associated with those elements (such as
positions or lengths). We collected such expressions from papers
published over four years of SIGGRAPH proceedings (2019–2022).
We were particularly interested in how authors model and notate
mesh connectivity, subsets of mesh elements, and refer to values
associated with mesh elements.

Connectivity. Authors commonlymodelmesh connectivity in terms
of discrete sets of elements. For instance, onemight useM = (𝑉 , 𝐸, 𝐹 )
to denote a triangular surface mesh with vertex set𝑉 (which is just
an abstract set of points, with no associated data), edge set 𝐸, and
triangle set 𝐹 , respectively. A similar representation can be used
for volumetric meshes (e.g., by adding a set 𝑇 of tetrahedra, or a
set𝐶 of more general polyhedral cells), or for point clouds (e.g., by
omitting 𝐹 and perhaps using 𝐸 to encode the nearest neighbors

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:4 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

of each point). Though not often considered in graphics, this ba-
sic set-based construction is compatible with more rigorous treat-
ment of mesh topology in terms of simplicial complexes [Edelsbrun-
ner 1999], or more generally cell- or CW-complexes [Hatcher 2002,
Chapter 0]. Alternatively, onemight name only the highest-dimensional
elements, from which the lower-dimensional elements can be in-
ferred. E.g., for a triangle mesh with no isolated edges or vertices,
the set 𝐹 contains all information about connectivity. In practice,
it is hence quite common to model a triangle mesh as a pairM =
(𝑉 , 𝐹 ) where 𝐹 is the face set, but𝑉 is now a concrete list of vertex
coordinates, rather than abstract points.

Values. More generally, values associated with mesh elements
are typically modeled as either sets indexable by mesh elements,
or equivalently, as functions from the set of vertices 𝑉 to a space
of values (like R𝑛). For example, triangle areas might be expressed
as 𝑎𝑓 ∈ R≥0 for each 𝑓 ∈ 𝐹 , which can also be viewed as a map
𝑎 : 𝐹 → R.

Matrix Representation. Some authors assume from the outset that
both connectivity and values are already encoded as matrices. For
instance, the faces of a triangle mesh might be interpreted as a ma-
trix 𝐹 ∈ Z |𝐹 |×3, where |𝐹 | is the number of triangles, and matrix
entries provide indices into the list of vertices. Likewise, vertex co-
ordinates might be expressed as a matrix 𝑉 ∈ R |𝑉 |×3.

Neighborhooods. The notation above is sufficient for specifying
values associated with individual elements. However, it does not
provide amechanism for specifying incidence relationships between
mesh elements, which are needed to define mesh neighborhoods
(sometimes called stencils), and in turn, build up larger expressions.
Some examples from recent SIGGRAPH papers are shown in Fig-
ure 2. A significant challenge is that common terminology often
has ambiguous or overloaded meaning—for instance, the 1-ring of
a vertex 𝑣 ∈ 𝑉 might refer only to neighboring vertices (perhaps
with or without 𝑣), or it might mean all mesh elements incident on
𝑣 (including both edges and triangles). This lack of specificity can
be problematic for correctly translating mathematical expressions
into code. Although more precise symbolic notation for incidence
relationships exist in some settings (such as star, link, and closure
[Edelsbrunner and Harer 2008]), they are quite rare in computer
graphics (appearing in no paper from our survey). Apart from a
few exceptions (e.g., Sharp et al. [2019b, Section 2.1]), authors often
do not explicitly define notation for iteration over neighborhoods—
assuming that it will be understood from context and prior knowl-
edge.

However, in order to perform automatic transformations, I❤MESH
must be given formal definitions of neighborhoods. One possibility
would be to parse existing natural language definitions (as already
given in many papers). Although this approach could be quite valu-
able, it is also quite difficult to implement reliably—for instance,
even state of the art large language models still struggle with for-
mal reasoning [Xu et al. 2023]. Instead, neighborhood definitions
are expressed in H❤ rtLang itself, in terms of operations on bound-
ary matrices (Section 3.1) and vectors that encode sets of mesh ele-
ments. This mechanism enables users to model iteration over mesh
neighborhoods as they see fit; we also provide a library of mesh

neighborhoods common across geometry processing. We describe
I❤MESH’s layered design in Section 4.

3.1 Boundary Matrices
We use boundary matrices as the basic internal representation for
mesh connectivity in I❤MESH. For any mesh data structure, the
𝑘th boundary matrix 𝜕𝑘 encodes which 𝑘-dimensional mesh ele-
ments are adjacent to which (𝑘 − 1)-dimensional elements, as well
as the relative orientation of these elements. For instance, in a tri-
angle mesh with connectivity M = (𝑉 , 𝐸, 𝐹 ) the matrix 𝜕2 is an
|𝐸 | × |𝐹 | matrix with nonzero entries 𝜕2

𝑒,𝑓
= ±1 for each edge 𝑒 ∈ 𝐸

contained in each triangle 𝑓 ∈ 𝐹 . The sign of the entry is positive
if the orientations agree (e.g., the direction of the edge is consis-
tent with the winding direction of the face) and negative otherwise.
Orientation information is essential for many geometry processing
tasks—for instance, to compute consistently-oriented surface nor-
mals on a triangle mesh. Note however that the relative orientation
information needed to define boundary matrices is still available
even for globally nonorientable geometry (such as a Möbius band).

Element indices. The boundary matrix construction assumes that
each mesh element of the same dimension is assigned a unique in-
dex from a contiguous range starting at 1. In this sense, the element
sets (𝑉 , 𝐸, etc.) can also be viewed as subsets of the integers. Indices
can be assigned arbitrarily, since changing the indexing simply per-
mutes the matrix rows/columns—and hence does not impact the
meaning of the entries. Figure 3 shows an example of a tetrahedral
mesh and its corresponding boundary matrices.

Extracting neighborhoods. The boundary of a set of elements can
be obtained by multiplying a boundary operator with an indicator
vector for those elements, i.e., a vector equal to one at each index
corresponding to an element in the set, and zero otherwise. For-
mally, this indicator vector encodes the set of elements as a chain,
i.e., a formal linear combination of mesh elements [Hatcher 2002,
Chapter 2]. For example, in Figure 3, the matrix-vector product
𝜕3 (1, 1)⊤ yields a vector with non-zeros corresponding to the ex-
terior faces of the two tetrahedra (all but face 4), with values ori-
ented consistently with these tetrahedra. Similarly, the boundary
of a single triangle is its three oriented edges (circulating around
the triangle), and the boundary of an edge is its two endpoints (neg-
ative at the “tail”, and positive at the “head”). The co-boundary of
a 𝑘-dimensional element, comprised of incident 𝑘 + 1-dimensional
elements, can likewise be obtained by multiplying an indicator by
the transpose of a boundary matrix. For example, the non-zeros of
(𝜕1)⊤ (0, 0, 0, 0, 1)⊤ correspond to the edges 6, 8, 9 incident on ver-
tex 5. Finally, multiplying the absolute value of all𝑘−1-dimensional
boundary matrices by an indicator vector for a single element (i.e.,
a Kronecker delta) gathers all the vertices of a 𝑘-dimensional el-
ement. For instance, |𝜕1 | |𝜕2 | |𝜕3 | (1, 0)⊤ gathers all vertices (of all
edges of all faces) of the first tetrahedron in Figure 3.

Formally, boundary matrices unambiguously determine a CW-
complex, up to reparameterization of the gluing maps. Hence, they
are sufficiently expressive to encode most of the mesh data struc-
tures commonly used in geometry processing, including point clouds,

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



I❤MESH: A DSL for Mesh Processing • 0:5

2

1

2
3

1 6

87

5
9

4

4

3

5

41 5

2

3

6

7

C = {1, 2}

V = {1, 2, 3, 4, 5}

E = {1, 2, 3, 4, 5, 6, 7, 8, 9}

F = {1, 2, 3, 4, 5, 6, 7}

1 2

=

− 1
1

− 1
1 − 1

1
− 1

1

=

1 1
− 1 1

− 1 − 1
1 1 1

1 − 1 1
− 1 − 1

1 1 1
1 − 1

1 1

=

− 1 − 1 − 1
1 − 1 − 1 − 1

1 1 − 1 − 1
1 1 1 − 1

1 1 1

Fig. 3. Element sets and boundary matrices for a simple tetrahedral mesh
(adapted from [Elcott and Schröder 2005]).

simplicial meshes and many kinds of polygonal/polyhedral meshes.
From a data structure point of view, they are strictly more general
than a list of top-dimensional cells (such as a vertex-face adjacency
matrix), and can represent most complexes representable by linked
list-like data structures (halfedge, corner table, etc.), apart from a
few corner cases (e.g., a single edge glued together at endpoints to
form a loop). Hence, boundary matrices provide an attractive inter-
nal representation of connectivity in I❤MESH—while still support-
ing a language where most final mesh expressions can be written
without explicit reference to boundary matrices.

The choice to use boundary matrices is also compatible with
the larger design of H❤ rtLang, which is already built on top of
sparse matrix representations. The only additional support needed
for I❤MESH are functions to create an indicator vector from a set
of element indices and vice versa—see Section 4.2.

4 PROGRAMMING MODEL AND LANGUAGE DESIGN
We introduce our programming model via an example. Consider
the following expression for discrete Gaussian curvature on a tri-
angle mesh. For each vertex, the Gaussian curvature can be defined
as the angle defect:1

𝐾 (𝑣) = 2𝜋 −
∑

𝑓 ∈faces (𝑣)
𝜃𝑣,𝑓 (1)

where 𝜃𝑣,𝑓 is the angle between incident edges of the face 𝑓 at the
vertex 𝑣 .

The following is a complete implementation in I❤MESH. It gen-
erates a module containing the function 𝐾 (𝑣) that takes a mesh
vertex as a parameter.

1 ElementSets from MeshConnectivity

1We follow the definition from Geometry Central [Sharp et al. 2019a], which does not
divide by the local area.

2 Faces, NeighborVerticesInFace from Neighborhoods(M)
3 arccos from trigonometry
4
5 M: FaceMesh
6 V, E, F = ElementSets( M )
7 x_i ∈ ℝ³
8
9 K(v) = 2π - ∑_(f ∈ Faces(v)) θ_v,f where v ∈ V

10
11 θ_i,f = arccos((x_j-x_i)⋅(x_k-x_i)/(‖x_j-x_i‖ ‖x_k-x_i‖))
12 where i ∈ V, f ∈ F, j,k = NeighborVerticesInFace(f,i)

Thefirst three lines import built-in packages.The MeshConnectivity

module provides access to the element sets and boundary matrices
of a mesh (Section 4.1). The Neighborhoods module is initialized with
the input mesh 𝑀 declared on line 5. The module’s functions are
tied to 𝑀 and will perform checks to ensure that only elements of
𝑀 are passed as parameters (Section 4.1.1). Lines 6 and 7 access
the element sets of 𝑀 and declare a second input parameter 𝑥 of
per-vertex positions. Line 9 is a direct translation of Equation 1. It
makes use of the neighborhood function Faces, whichmaps a vertex
in𝑀 to the set of incident faces. H❤ rtLang supports function over-
loading based on parameter types (Section 4.3.2), so Faces behaves
appropriately when called with an edge, face, or cell. Line 11 de-
fines the incident angle, which wasn’t specified in Equation 1. Note
that H❤ rtLang allows definitions to occur out of order. The 𝜃 func-
tion takes its parameters as subscripts. Its parameters are defined as
members of𝑉 and 𝐹 . The compiler also verifies that 𝜃 ’s parameters
belong to these specific element sets of𝑀 .The 𝜃 functionmakes use
of another neighborhood function, NeighborVerticesInFace, which re-
turns the next two vertices in 𝑓 in counterclockwise order. When
compiled, I❤MESH generates LaTex for typesetting.

Usage from C++. The following C++ code uses the module gen-
erated by I❤MESH to compute the curvature for each vertex.

1 // Load a mesh from disk.
2 Eigen::MatrixXi F;
3 std::vector<Eigen::Vector3d> x;
4 LoadOBJ("mesh.obj", x, F);
5 // Create boundary matrices.
6 iheartmesh::TriangleMesh M(F);
7 // Copy boundary matrices into the I❤MESH data structure.
8 iheartmesh::FaceMesh fm(M.bm1, M.bm2);
9 // Initialize the Gaussian curvature module.

10 GaussianCurvature module(fm, x);
11 std::vector<double> gaussian_curvature(x.size());
12 for (int i = 0; i < x.size(); ++i) {
13 // Compute per-vertex curvature.
14 gaussian_curvature[i] = module.K(i);
15 }

In this snippet, line 6 creates boundary matrices for a triangle mesh
with a provided iheartmesh::TriangleMesh helper class, and line 8 ini-
tializes the corresponding I❤MESH mesh data structure to pass
as a parameter to the module. iheartmesh::FaceMesh is a lightweight
C++ class provided with I❤MESH containing the mesh data (Sec-
tion 4.2). Line 10 initializes the C++ class generated by the I❤MESH
compiler with the mesh and positions. Line 14 calls the Gaussian
curvature function 𝐾 as an ordinary C++ method for each vertex.

4.1 Architectural Layers
I❤MESH has a layered architecture (Fig. 4). Users write mesh ex-
pressions in H❤ rtLang that are compiled by I❤MESH. A typical
user’s neighborhood and stencil functions are included in a library
provided with I❤MESH. However, we cannot anticipate every kind

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:6 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

Mesh expressions H❤ rtLang (user)
Neighborhoods and Stencils H❤ rtLang module (provided or user)
Cellular Sets H❤ rtLang module (provided)

I❤
M
ES

H
︷    ︸︸

    ︷

Boundary Matrices & Element Sets Built-in module (MeshConnectivity)
Sparse Matrices & Integer Sets Backend library (C++, Python, etc.)

Fig. 4. I❤MESH’s layered architecture supporting user-written mesh ex-
pressions. H❤ rtLang is the extension of I❤LA with many new language
features. I❤MESH contains the MeshConnectivity built-in module in addi-
tion to a library of neighborhood and stencil functions. Much of I❤MESH
is written in H❤ rtLang itself. This allows users to write and share their own
neighborhood and stencil functions as needed by accessing the the cellular
set or boundary matrix layers of I❤MESH. This also facilitates adding sup-
port for additional backend languages.

of mesh stencil or neighborhood a user may need. Because much of
I❤MESH is writtenH❤ rtLang itself, users canwrite and share func-
tions that iterate over new kinds of own neighborhoods as needed.
This extensible architecture alsominimizes the effort needed to gen-
erate code for additional backends.

4.1.1 Boundary Matrices and Elements Sets. The core mesh data
structure in I❤MESH consists of boundary matrices and element
sets.The built-in MeshConnectivitymodule provides access to amesh’s
element sets, boundary matrices, and functions for creating indi-
cator vectors from an element set and an element set from an in-
dicator vector (via the vector’s non-zero elements). Boundary ma-
trices are sparse matrices. Although element sets are all encoded
as sets of integers, element sets of different dimension (vertices,
edges, faces, and cells) are distinct, incompatible types in I❤MESH.
Moreover, I❤MESH tracks which mesh an element set originated
from. This metadata allows type checking function parameters so
that, for example, 𝜃 ’s parameter declared v∈V can be guaranteed to
have originated from the mesh M, since V,E,F = ElementSets(M). This
data flow type checking also allows a function to be declared as
only taking elements from a subset (e.g., non-boundary elements).
The compiler tracks the originating mesh with an owner property
attached to matrices and sets. Incompatible mesh origins raise an
I❤MESH compile-time error. Set membership cannot in general be
tracked at compile time, so it is checked at run-time.

4.1.2 Cellular Sets. We use the term cellular set to simply mean
any collection of mesh elements, of possibly heterogeneous type—
e.g., a single cellular set might contain vertices and faces. In the
layer above boundarymatrices, I❤MESH provides a library of basic
operations on cellular sets. For instance, functions Vertices, Edges,
Faces, and Cells have an overloaded meaning, based on the type of
their input and the relative dimension:
• Given a CellularSet, they yield the elements within that set

of a specific type. For example, applying Edges to a cellular
set containing vertices, edges, and faces will yield only the
edges.
• Given a higher-dimensional element (or homogeneous set

of such elements), they yield its lower-dimensional compo-
nents. For example, applying Vertices to a single triangle 𝑓
will produce the three vertices of 𝑓 ; applying it to a set con-
taining two adjacent triangles will yield their four shared ver-
tices.

• Likewise, given a single lower-dimensional element (or ho-
mogeneous set of such elements), they yield the higher-dimensional
elements containing it. For example, applying Edges to a sin-
gle vertex 𝑣 yields all edges 𝑒 containing 𝑣 ; applying it to a
set of vertices yields all edges incident on any vertex in that
set.

All of these operations are trivial to implement in terms of bound-
ary matrices. For instance, the following H❤ rtLang code defines
the cellular set operations for a polygonal mesh:

1 ElementSets, BoundaryMatrices, UnsignedBoundaryMatrices, NonZeros,
IndicatorVector from MeshConnectivity

2
3 M: FaceMesh
4
5 V, E, F = ElementSets( M )
6 `∂⁰`, `∂¹` = BoundaryMatrices(M)
7 `B⁰`, `B¹` = UnsignedBoundaryMatrices(M)
8 `B⁰ᵀ` = `B⁰`ᵀ
9 `B¹ᵀ` = `B¹`ᵀ

10
11 Vertices(S) = S₁ where S: CellularSet
12 Edges(S) = S₂ where S: CellularSet
13 Faces(S) = S₃ where S: CellularSet
14
15 Vertices(f) = vertexset(NonZeros(`B⁰` (`B¹` IndicatorVector({f})))) where f ∈ F
16 Vertices(G) = vertexset(NonZeros(`B⁰` (`B¹` IndicatorVector(G)))) where G ⊂ F
17 Vertices(e) = vertexset(NonZeros(`B⁰` IndicatorVector({e}))) where e ∈ E
18 Vertices(H) = vertexset(NonZeros(`B⁰` IndicatorVector(H))) where H ⊂ E
19
20 Edges(v) = edgeset(NonZeros(`B⁰ᵀ` IndicatorVector({v}))) where v ∈ V
21 Edges(f) = faceset(NonZeros(`B¹` IndicatorVector({f}))) where f ∈ F
22
23 Faces(v) = faceset(NonZeros(`B¹ᵀ` (`B⁰ᵀ` IndicatorVector({v})))) where v ∈ V
24 Faces(e) = faceset(NonZeros(`B¹ᵀ` IndicatorVector({e}))) where e ∈ E

For performance, we declare the transpose of B0 and B1 and add
explicit parentheses around the matrix products to guarantee that
matrix-vector products are performed (Section 8.1).

4.1.3 Neighborhoods and Stencils. I❤MESH provides a built-in li-
brary of neighborhood and stencil functions. For triangle meshes,
this includes a vertex-vertex one ring, edge diamond, the vertices
opposite an edge, the oriented vertices in a face, etc. For example,
an edge diamond can be written in terms of cellular set operations:

1 Diamond(e) = CellularSet(Vertices(e), {e}, Faces(e)) where e ∈ E

This function constructs a cellular set where the vertex set contains
the endpoints of e, the edge set is just {e}, and the face set consists
of all faces containing e.

In contrast, the next vertex around a face requires orientation
information from the boundary matrices two layers away:

1 NextVertexAroundFace(f, v) = vset_1 where v ∈ V, f ∈ F,
2 eset = { e for e ∈ Edges(f) if `∂1`_e,f `∂0`_v,e = -1},
3 vset = Vertices(eset) - {v}

This expression first builds a set eset of all edges of face f that are
oriented as outgoing edges from vertex v. The product of boundary
matrix elements computes this orientation. There should be only
one such edge. This expression then builds vset, the set consisting
of the edge’s two vertices without the vertex parameter v itself. vset
should have a single element; it is returned from the function.

Though somewhat complex, neighborhood and stencil functions
need only be written once and can be shared and re-used many
times.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



I❤MESH: A DSL for Mesh Processing • 0:7

4.2 Semantics of Architectural Layers
Acellular set is represented as a tuple containing a set of 0-dimensional
vertices, 1-dimensional edges, 2-dimensional faces, and 3-dimensional
cells. Some of these sets may be empty—e.g., for a surface mesh, the
cell set is empty. Each type within the system is associated with a
“source” tag, which tracks its originating mesh. Element sets are
integer sets ranging from 1 to their respective dimensions.

The NonZeros and IndicatorVector functions are used to convert
between set-based and vector-based encodings of a collection of
mesh elements. Namely, NonZeros returns the set of nonzero indices
of a sparse column vector; IndicatorVector constructs a sparse col-
umn vector with a nonzero entry 1 for each element in a given set.
Pseudocode for these routines is given in Algorithms 1 and 2. Both
functions have overloaded definitions, according to element type,
but are implemented using the same backend function.

Algorithm 1 IndicatorVector
Input: a vertex set 𝑠 ⊲ Also works for an edge/face/cell set
Output: a vector
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑧𝑒𝑟𝑜𝑠 (𝑠 .𝑠𝑜𝑢𝑟𝑐𝑒.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ)
𝑟𝑒𝑠𝑢𝑙𝑡 .𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑠 .𝑠𝑜𝑢𝑟𝑐𝑒 ⊲ Copy the source mesh
for 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑠 do

𝑟𝑒𝑠𝑢𝑙𝑡 [𝑖𝑛𝑑𝑒𝑥] ← 1
end for
return 𝑟𝑒𝑠𝑢𝑙𝑡

Algorithm 2 NonZeros
Input: a vertex vector 𝑣 ⊲ Also works for an edge/face/cell vector
Output: a set
𝑟𝑒𝑠𝑢𝑙𝑡 ← {}
𝑟𝑒𝑠𝑢𝑙𝑡 .𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒 ⊲ Copy the source mesh
for 𝑖𝑛𝑑𝑒𝑥 ∈ 𝑟𝑎𝑛𝑔𝑒 (|𝑣 |) do

if 𝑣 [𝑖𝑛𝑑𝑒𝑥] ≠ 0 then
𝑟𝑒𝑠𝑢𝑙𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑖𝑛𝑑𝑒𝑥)

end if
end for
return 𝑟𝑒𝑠𝑢𝑙𝑡

MeshConnectivity is the I❤MESH module that provides access to
mesh data passed from the host language code. It provides both
signed and unsigned boundary matrices. Signed matrices provide
orientation information, while unsignedmatrices aremultipliedwhen
querying neighbors. The following is the complete data structure
for a face mesh in the C++ backend. It is initialized with signed
boundary matrices, and generates and stores the unsigned matri-
ces and element sets. It provides convenient accessors for this data.
The dimensions of mesh elements are accessed by the implemen-
tation of IndicatorVector, ensuring compatibility for matrix-vector
multiplications involving boundary matrices. As this data structure
serves as the interface between ambient code and I❤MESH, we
want it to be readable andminimally complex. As such, IndicatorVector
and NonZero are implemented as separate helper functions.

1 class FaceMesh {
2 public:
3 typedef std::vector<int> Set;
4 typedef Eigen::SparseMatrix<int> Matrix;
5 typedef std::tuple<const Set&,const Set&,const Set&> FaceSetTuple;
6 typedef std::tuple<const Matrix&, const Matrix&> FaceMatTuple;
7 FaceMesh(){};
8 FaceMesh(const Matrix& bm1_, const Matrix& bm2_) {
9 bm1 = bm1_;

10 bm2 = bm2_;
11 pos_bm1 = bm1.cwiseAbs();
12 pos_bm2 = bm2.cwiseAbs();
13 Vi.resize(bm1.rows());
14 for (int i = 0; i < bm1.rows(); ++i){ Vi[i] = i; }
15 Ei.resize(bm1.cols());
16 for (int i = 0; i < bm1.cols(); ++i){ Ei[i] = i; }
17 Fi.resize(bm2.cols());
18 for (int i = 0; i < bm2.cols(); ++i){ Fi[i] = i; }
19 }
20 int n_vertices() const{ return bm1.rows(); }
21 int n_edges() const{ return bm1.cols(); }
22 int n_faces() const{ return bm2.cols(); }
23 FaceSetTuple ElementSets() const{ return std::tie(Vi, Ei, Fi); }
24 FaceMatTuple BoundaryMatrices() const{ return std::tie(bm1, bm2); }
25 FaceMatTuple UnsignedBoundaryMatrices() const{ return std::tie(pos_bm1,

pos_bm2); }
26 private:
27 Set Vi;
28 Set Ei;
29 Set Fi;
30 Matrix bm1; // |V|x|E|
31 Matrix pos_bm1; // |V|x|E|
32 Matrix bm2; // |E|x|F|
33 Matrix pos_bm2; // |E|x|F|
34 };

4.3 H❤ rtLang Improvements
We substantially enhancedH❤ rtLangwith functionality to support
a variety of practical mesh processing applications (Section 7).

4.3.1 Automatic Differentiation. Many geometry processing algo-
rithms involve optimization over energies defined on meshes. We
extendedH❤ rtLangwith support for taking first and second deriva-
tives (gradients and Hessians) of expressions.These derivatives can
be with respect to scalar, vector, or matrix types—or sequences
thereof. To do this, H❤ rtLang applies automatic differentiation.Many
automatic differentiation libraries require users to vectorize their
variables, in the sense of enumerating them as a sequence. I❤MESH
automates this vectorization for users. The resulting gradient or
Hessian dimensions are determined by the total dimensions of the
vectorized parameters. The precise enumeration is arbitrary—we
use memory storage order—and opaque to users. To allow users to
make use of these gradients and Hessians in further algebraic ex-
pressions, such as taking a step along the gradient direction, I❤MESH
exposes its generalized vectorization operator vec and inverse vec−1.
For example, the following I❤MESH code takes a gradient descent
step (line 12) towardsminimizing the unweighted Laplacian of edge
positions subject to a data term:

1 ElementSets from MeshConnectivity
2 Vertices from Neighborhoods(M)
3 vec, vec⁻¹ from linearalgebra
4
5 M: FaceMesh
6 V, E, F = ElementSets( M )
7 x_i ∈ ℝ³
8 y_i ∈ ℝ³
9 L = 1/|E| ∑_( e ∈ E ) ‖ x_i - x_j ‖² where i,j = Vertices(e)

10 D = 1/|V| ∑_( v ∈ V ) ‖ x_v - y_v ‖²
11 g = ∂(L+D)/∂x
12 `x'` = vec⁻¹_x( vec(x) - 0.1g )

4.3.2 Naming Enhancements. Formesh-related functions, it is com-
mon to use the same function name with different parameter types.
For example, the Vertices function retrieves the endpoints of an

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:8 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

edge, the three vertices of a triangle, or the four vertices of a tetrahe-
dron. We extended H❤ rtLang with support for function overload-
ing based on parameter types.This support is based on H❤ rtLang’s
type system, not the backend language. This is important, since
H❤ rtLang’s element sets have the same C++ type in the generated
code and Python does not support type-based function overloading
at all. We also extended H❤ rtLang to support passing parameters
as subscripts. This notation appears commonly in the literature, as
in Equation 1’s 𝜃 .

Practitioners often have preferred names and notations for their
functions. In support of this, we extended H❤ rtLang to allow re-
naming symbols when importing them from amodule. For example,
the following snippet shortens a function name for more concise
expressions.

1 NextVertexAroundFace as next from MeshConnectivity

This example renames a long yet clear name NextVertexAroundFace

into the short and ambiguous name next. Authors often prefer short
names in mathematical expressions—even single letters—with ver-
bal descriptions in the text.

4.3.3 Scope and Recursion. We extended H❤ rtLang to support lo-
cally scoped variable definitions for summations and functions. H❤ rt-
Lang’s def-use analysis allows these definitions to be written in
author-preferred order. We also added support for recursion. To-
gether, these features allow for functional programming.

4.3.4 Improved Set Functionality. H❤ rtLang allows users to define
sets by filtering other sets with expressions and perform algebraic
manipulations like unions and intersections. For example, the fol-
lowing expression collects vertices in the one ring closer than a
threshold 𝑑 :

1 S = {j for j ∈ VertexOneRing(i) if ‖x_i - x_j‖² < d}

5 DSL COMPARISONS
Wecharacterized the design space ofmesh processingDSLs in graph-
ics to motivate I❤MESH and understand its unique set of attributes.
We focused our investigation on I❤MESH, Simit [Kjolstad et al.
2016], Ebb [Bernstein et al. 2016], and MeshTaichi [Yu et al. 2022].
To understand these DSLs and illustrate our findings, we imple-
mented the same mesh processing algorithm (per-vertex mean cur-
vature) in all of them (Appendix A). We summarize our findings in
Table 1 and Figure 5. Table 1 identifies, for each DSL, the data struc-
ture used for querying mesh element relationships, the approach
to storing per-element attributes, built-in mesh types, the space of
user-supportable mesh types, and the syntax in which users write
their code. Figure 5 displays mesh DSLs in a Venn diagram among
several characteristics: high performance, whether neighborhood
sets must be defined across two languages, whether user-defined
neighborhood sets can be composed easily (e.g., sharable as snip-
pets versus interleaved among other code), whether the language
supports global matrix assembly, andwhether the syntax resembles
conventional mathematical notation.

Appendix A displays the source code for each language, with
color coding to highlight lines related to the mesh expression, sten-
cil definition, and driver code. To calculate curvature, we must de-
termine the dihedral angle for each edge. This requires accessing
the oriented adjacent triangles for an edge (oriented edge flaps). We
chose this example since this specific stencil or neighborhood func-
tion is not trivially supported and allows us to highlight how users
create additional neighborhood functions in each language.

Ebb and Simit both draw inspiration from databases and focus on
high-performance simulation. Ebb provides a three-layer architec-
ture, enabling simulation code to bewritten on top of programmable
relational domain libraries. These top two layers are written in the
Lua programming language. (The bottom layer is the runtime.) Fig-
ure 2 in Bernstein et al. [2016] showcases a mass-spring simula-
tion written in Ebb. Kernel functions can be applied over mesh ele-
ments directly.This approach leads to high performance and allows
users to support any mesh type. For our dihedral angle example,
the built-in domain library for triangle meshes lacks oriented edge
flaps. Adding this relation requires the creation of a new domain
library. We copied-and-pasted the triangle mesh library and modi-
fied some lines to add new, needed relations (Figure 9, EdgeFlapMesh
.t, yellow highlighted lines). We could have re-architected the in-
cluded triangle mesh library for inheritance, but one would still
run into the problem of code re-use when trying to mix in addi-
tional stencils via, for example, multiple inheritance. For this rea-
son, we do not consider Ebb to support composable neighborhood
definitions (Figure 5). Ebb’s strict layer separation does not allow
for lightweight definition of new relations.

Simit emphasizes the local/global distinction between local as-
sembly kernels and high-performance global linear algebra [Bern-
stein and Kjolstad 2016]. It facilitates a seamless transition between
graph and matrix views of the simulation. Figure 7 in Kjolstad et al.
[2016] demonstrates how the global matrix can be assembled. Users
define hyperedges between sets of structs in the Simit language and
bind them in C++. Hypergraphs in Simit allow users to define vari-
ous stencils on any mesh. Kernel functions can be directly applied
to hypergraph sets. To implement the dihedral angle formula in
Simit, we defined a hyperedge consisting of the endpoint vertices
and adjacent faces given an edge (Figure 9, (a) Simit code, green
highlighted lines 13–15).We then prepared the stencils (Figure 9, (a)
C++ code, yellow highlighted lines) and bind the data in C++ (Fig-
ure 9, (a) C++ code, green highlighted lines). While this approach
allows for high-performance execution over any mesh type, stencil
implementation must be written entirely by the user in C++. Com-
position is possible but entirely delegated to the user’s approach to
defining connectivity; if users choose, they may build C++ libraries
defining composable neighborhoods, but the libraries will be tied
to the user’s C++ mesh data structure, which Simit is agnostic to.

MeshTaichi is designed to accelerate mesh processing by struc-
turing memory access patterns on the GPU. It is a DSL embedded
in Python. Its optimizations are conceptually similar to the GPU
mesh library RXMesh [Mahmoud et al. 2021]. MeshTaichi parti-
tions the mesh into patches for cache efficiency when accessing
per-element attributes. (RXMesh does the same for accessing mesh
neighbor relationships instead.) MeshTaichi supports triangle and

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



I❤MESH: A DSL for Mesh Processing • 0:9

Table 1. For each DSL: the data structure used for querying mesh element relationships, how per-element attributes are stored, built-in mesh types, the
space of user-supportable mesh types, and the syntax users write their code in. Compatible mathematical objects means various I❤MESH types including
matrices, sequences, or functions taking objects. See the text for details.

Mesh DSL Relation data structure Attribute storage Mesh types (built-in) Mesh types (supported) Syntax
Ebb relational models contiguous arrays triangle/tetrahedral meshes any Lua

2D/3D regular grids
polygonal/polyhedral meshes

Simit hypergraphs dense and sparse tensors none any MATLAB-like and C++
MeshTaichi V/E/F/C-V/E/F/C incidence relations contiguous arrays triangle/tetrahedral meshes triangle/tetrahedral meshes Python
I❤MESH boundary matrices compatible mathematical objects triangle/tetrahedral meshes simplicial (cellular) sets H❤ rtLang

point clouds
polygonal/polyhedral meshes

tetrahedral meshes, with no opportunity for extensibility. Mesh-
Taichi provides built-in support for element incidence relationships.
However, accessing information beyond the one-ring neighbors ne-
cessitates awkward iteration to gather stencil elements. In order
to query the orientations for our oriented edge flap neighborhood,
we implemented the stencil as interleaved lines of code with the
computation (Figure 9, (c) MeshTaichi, yellow highlighted lines).
We could have instead separated the stencil by gathering a set of
local variables—other DSLs enforce this—at the cost of lengthier
code. As in Simit, composition is possible but entirely delegated to
the user’s approach to defining connectivity. In MeshTaichi, unlike
Simit, neighborhoods are written in the same language as compu-
tations, which increases compatibility between such code.

I❤MESH is designed to facilitate executing mesh processing ex-
pressions as conventionally written in papers. The emphasis is on
syntax and flexible neighborhood definitions, rather than perfor-
mance. Users write mesh expressions and neighborhood functions
in H❤ rtLang. Mesh relation data is provided and stored as signed
boundary matrices (Section 3.1). This is general enough to support
the well-studied CW complexes and simplicial sets from algebraic
topology. In particular, this is capable of representing triangle/tetra-
hedral meshes, polygonal/polyhedral meshes, regular grids, point
clouds, and more exotic meshes used in mesh processing applica-
tions (tufted covers Sharp and Crane [2020] and intrinsic triangula-
tions [Sharp et al. 2021]). However, this is more limited than Ebb’s
relational models or Simit’s hypergraphs, which can represent in-
consistent relationships, such as an edge set (pairs of vertices) that
doesn’t match the triangle set (triplets of vertices). In I❤MESH, one
could supply multiple meshes associated with the same element at-
tributes, but not relate elements in onemesh to the other. Attributes
can be stored in any compatible mathematical object supported
by H❤ rtLang, e.g., by subscripting a sequence, matrix, vector, or
calling a function. I❤MESH provides many built-in neighborhood
functions. New neighborhood relations can be written succinctly
and access any of the architectural layers (Figure 9, OrientedOppositeFaces
in I❤MESH code, yellow highlighted lines). Users have the flexibil-
ity to write them where they are needed (as in the example) or cre-
ate custom libraries of neighborhoods. Neighborhoods can make
use of other existing neighborhood functions, fundamental inci-
dence relationships, or the boundary matrices themselves. Users
can share individual or libraries of neighborhoods, similar to how
BibTeX is shared. I❤MESH provides a library of common neighbor-
hood functions.

Conventional 
Mathematical 

Notation

Global Matrix 
Assembly

Neighborhoods 
in Language

High 
Performance

Composable  
Neighborhood 

Definitions

Simit

Mesh 
Taichi 

Ebb

I❤
MESH

Fig. 5. A Venn diagram of mesh processing DSL attributes. Mesh process-
ing DSLs occupy different points in the design space. High Performance
refers to the intended use of the DSL for efficient computation (on CPUs
and GPUs). Neighborhoods in Language refers to the ability to write neigh-
borhood or stencil definitions in the same rather than a second language.
Conventional Mathematical Notation refers to the similarity of the DSL syn-
tax to notation used in, e.g., papers. Global Matrix Assembly refers to the
ability of the DSL to construct a sparse, global system matrix where each
mesh element contributes to a specific block within thematrix.Composable
Neighborhood Definitions refers to the ability to compose neighborhood
and stencil definitions written separately (i.e., an individual neighborhood
is composable if it can be easily shared as a code snippet versus interleaved
among other code). Simit is agnostic to the user’s choice of mesh data struc-
ture. As a result, the composability of its neighborhood definitions is depen-
dent on users choosing consistent mesh data structures. I❤MESH empha-
sizes exploration as the only system with neighborhood accessors written
in the language, composable mesh types, and conventional mathematical
notation.

6 IMPLEMENTATION
We implemented I❤MESH as a fork of I❤LA [Li et al. 2021], inher-
iting the core compiler infrastructure for H❤ rtLang. I❤MESH was
designed to minimize backend-specific development effort, allow-
ing it to scale to more backends. Most of our changes were written
to the Python-based compiler itself. The upper layers of I❤MESH
were written in H❤ rtLang. Each target language interfaces with
I❤MESH by creating boundary matrices from the input data.These
must be created by the user and passed when initializing their gen-
erated I❤MESH module. I❤MESH provides convenience routines

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:10 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

in the target languages for creating these data structures from var-
ious kinds of mesh data. We have written such routines for trian-
gle meshes (all backends) as well as polygon meshes, tetrahedral
meshes, and point clouds (C++). Our point cloud mesh construc-
tion defines edge connectivity based on radius or k-nearest neigh-
bors. (Two points are considered neighbors if either one of them
has the other as a k-nearest neighbor.) We do this efficiently with
a KD-Tree built using the nanoflann library [Blanco and Rai 2014].

I❤MESH employs reverse mode automatic differentiation from
the autodiff library [Leal 2023] to obtain derivatives. Derivative
support is currently only implemented in the C++ backend. (Full
MATLAB and Python support are left for the future.) The autod-
iff library provides a var type to monitor variables with which to
differentiate. In the generated code, any symbol whose definition
makes use of one of these variables must itself be an autodiff var

type. I❤MESH generates code assuming that module parameters
are of double type and only converts them to var types inside the
module when derivatives are encountered in the source code. In
lieu of creating a top-down Directed Acyclic Graph (DAG) tracking
all symbols’ interacting with derivative operations, I❤MESH relies
on generic programming with a simple rule. The left-hand side of
a derivative operator is of double type, while all other newly de-
fined non-integer symbols are of var type. Additionally, the system
generates C++ templated functions so that functions make use of
and return double or var type depending on the parameters. This
approach is conservative and may create more var types than nec-
essary. In the future, we plan to explore AST-based automatic differ-
entiation [Guenter 2007; Laue 2022], removing any backend library
requirements.

I❤MESH heavily relies on set operations when collecting neigh-
bor and stencil elements. In C++, set support is implemented as a
sorted std::vector with STL set operations for efficiency (versus std

::set and std::unordered_set).

7 RESULTS
To demonstrate I❤MESH’s breadth, we implemented a variety of
geometry processing techniques across different representations
(Figures 6 and 7) and verified correctness of the generated code by
comparing the output to reference implementations. Table 2 sum-
marizes these examples. Please see the supplemental material for
the full I❤MESH source code for each example, along with gener-
ated C++, an easily-compiled C++ driver program, and the typeset
generated LaTeX. The I❤MESH compiler itself is also included.

Vertex Normals. This example demonstrates I❤MESH’s support
for three kinds ofmeshes andmany kinds of neighborhoods.We im-
plemented multiple vertex normal techniques for triangle meshes,
polygon meshes, and point clouds (Figure 6). For triangle and poly-
gon meshes, we implemented a classic angle-weighted formula due
to Max [1999]. For each face incident at a vertex, the expression
accesses the next and previous neighboring vertices around the
oriented face. For triangle meshes, we also implemented formulas
for Gaussian and mean curvature normals from Crane et al. [2013],
which we discuss under Discrete Curvature. Point clouds lack faces,
so the normal estimation is entirely different. We implemented a
classic technique for estimating unoriented normals as the third

Table 2. Information about our mesh processing examples.

• V→F: given a vertex, find its incident faces.
• V→V: given a vertex, find vertices sharing an edge with it.
• FV→VO: given a face and one of its vertices, find the oriented vertex-
vertex neighbors of the vertex in the face.
• F→VO: given a face, find its oriented vertices.
• C→VO: given a cell, find its oriented vertices.
• VV→FO: given two edge-sharing vertices, find faces in the diamond ori-
ented with the first face containing the vertices in the given orientation.
• VV→VO: given two vertices sharing an edge, find the remaining two
vertices in the diamond with the same orientation as VV→FO.

Bilateral filtering finds vertex-vertex neighbors within a given radius. Geo-
desic distance finds vertex-vertex 𝑘-ring neighborhoods.

Example Mesh types Neighborhoods
Lines of
I❤MESH Derivatives

Vertex Normals Triangle mesh V→F, FV→VO 8 No
Polygon mesh V→F, FV→VO 8 No
Point cloud V→V 12 No

Discrete Curvature Triangle mesh V→F, FV→VO,
V→V, VV→FO,
F→VO

29 No

Winding Number Triangle mesh F→VO 15 No
Bilateral Filtering Triangle mesh V→V∗, FV→VO,

V→F
32 No

Geodesic Distance Triangle mesh V→V∗, FV→VO 21 No
Mesh Parameterization Triangle mesh F→VO 25 Yes

Mesh Deformation Tetrahedral mesh C→VO 39 Yes
Mass Spring Tetrahedral mesh V→V 24 No

principal component of each vertex and its vertex neighbors [Mi-
tra and Nguyen 2003]. The C++ driver code for these examples is
minimal, directly calling code generated by I❤MESH to obtain each
vertex normal.

Discrete Curvature. We implemented Meyer et al. [2003]’s dis-
crete Gaussian andmean curvature expressions for triangle meshes
and Crane et al. [2013]’s formulas for Gaussian and mean curva-
ture normals. This example demonstrates several additional neigh-
borhoods in I❤MESH such as those required for computing corner
angles opposite edge flaps. Figure 6 shows these curvatures and
curvature normals. The C++ driver code for these examples is also
minimal.

WindingNumber. We implemented the generalizedwinding num-
ber formula [Jacobson et al. 2013] and applied it to fill holes in a tri-
angle mesh (Figure 6). The formula involves a summation over all
faces of a triangle mesh and computing a quantity requiring each
face’s oriented vertices. The C++ code loads a triangle mesh and
a constrained Delaunay tessellation (CDT) of that mesh’s convex
hull, before using the I❤MESH module to compute the generalized
winding number at each tetrahedron’s barycenter, then extracting
a closed triangle mesh as the boundary of tetrahedra with winding
number ≤ 1

2 .

Bilateral Filtering. We implemented the bilateral filtering algo-
rithm introduced in Fleishman et al. [2003] for denoising meshes.
This example required implementing a new recursive neighborhood
function in H❤ rtLang that progressively expands the set of one-
ring vertex neighbors until all desired vertices have been collected.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



I❤MESH: A DSL for Mesh Processing • 0:11

Figure 6 displays a noisy input mesh and the smoothed output after
ten iterations. The C++ in this example is minimal.

Geodesic Distance. We implemented the geodesic distance algo-
rithm described by Calla et al. [2019], which uses a fast marching
method to update the geodesic distance from a point in a grow-
ing wavefront. To enable the propagation of topological level sets,
we wrote a neighborhood function that retrieves the sequence of
𝑘-ring neighboring vertices for a given set of vertices, with 𝑘 = 1
initially. In this example, we use C++ for the outer loop iteration,
which calls the propagation function written in I❤MESH in each
step. Figure 7 visualizes the geodesic distance to a point on a dragon
mesh.

Mesh Parameterization. This example demonstrates I❤MESH’s
automatic differentiation abilities for parameterizing a trianglemesh.
The algorithmworks byminimizing the distortion of ameshmapped
to the plane via the symmetric Dirichlet energy [Schreiner et al.
2004; Smith and Schaefer 2015].The energy is computed in I❤MESH
for each face and makes use of its oriented vertices to calculate
the map’s Jacobian. To optimize the energy, we obtain the gradi-
ent and Hessian of the energy automatically via automatic differ-
entiation, projecting the Hessian to be positive semi-definite (psd)
[Teran et al. 2005]. I❤MESH doesn’t support automatically gather-
ing only the non-zero elements of each face’s energy, so the Hes-
sian matrix is large.2 As a result, the psd projection was too slow
when written in H❤ rtLang, since H❤ rtLang can’t express the logic
for a gather/scatter step to exploit the particular structure of the
matrices [Schmidt et al. 2022]. Instead, we use a callback function
written in C++. The only other C++ code is the Newton’s method
and line search outer loop as in [Schmidt et al. 2022]. Figure 7 dis-
plays the optimized result for an animal model.

Tetrahedral Mesh Deformation. We implemented a variety of en-
ergies from Schmidt et al. [2022] to demonstrate tetrahedral mesh
neighborhoods and automatic differentiation.We implemented four
distinct energy functions: symmetric Dirichlet [Schreiner et al. 2004;
Smith and Schaefer 2015], exponential symmetric Dirichlet [Rabi-
novich et al. 2017], AMIPS, and conformal AMIPS [Fu et al. 2015].
The gradient andHessian are automatically computed and projected
in a similar manner to themesh parameterization example. Figure 7
presents the optimized outcome for a tessellated cube.

Mass Spring. To demonstrate a physical simulation, we imple-
mented a mass-spring system with explicit integration [Baraff and
Witkin 1998] directly in I❤MESH.This example operates on a tetra-
hedral mesh, which has internal edges for structural support. The
I❤MESH module is initialized with the rest state, mass, stiffness,
damping, and floor height. The I❤MESH module exposes two func-
tions, onewhich computes internal forces and onewhich time steps
the system forward. The C++ driver code simply calls the two rou-
tines in alternating order. The internal forces for each vertex were
computed by considering its neighboring vertices within a one-ring
structure; these forces are then used to compute the velocity of each

2TheHessian is also dense, though theoretically sparse. Automatic sparse Hessian com-
putation is an area of active research and out of scope for I❤MESH.

vertex. We use conditional assignments to handle boundary condi-
tions during force application. A video of our simulation is provided
in the supplemental material.

8 OBSERVATIONS, LIMITATIONS, AND FUTURE WORK
Implementing these examples required writing relatively few lines
of H❤ rtLang (Table 1). We verified the correctness of I❤MESH’s
generated code by comparing the output to reference implementa-
tions. It is unclear how to quantify the lines of driver C++ code.
Code to load a mesh and visualize the output is lengthy but boiler-
plate. The examples which used more specialized C++ did so to ac-
cess specific functionality unsupported by I❤MESH directly. Two
examples (parameterization, deformation) made use of C++ opti-
mization routines written outside I❤MESH. Clearly, this impacts
the portability of these examples. One direction of futureworkwould
be to automatically choose an appropriate optimization routine. How-
ever, we would then either need to tie our output to a per-platform
optimization package (introducing a similar dependency as our cur-
rent solution) or else include our own per-platform implementa-
tion of optimization routines. These examples also used C++ code
to project Hessian matrices to be positive, semi-definite. We ini-
tially wrote this routine in H❤ rtLang, but were unable to access the
small, dense submatrix necessary for reasonable performance. Two
of the examples (geodesic distance, bilateral filtering) made use of
dynamic neighborhoods. These were implementable in H❤ rtLang
as recursive functions with set algebra operations. They may have
been more naturally described with imperative logic. Our support
for recursive functions in theory allows for any logic to be written
in H❤ rtLang, but this is impractical in general. I❤MESH also does
not support topology-modifications, such as edge collapses.

8.1 Performance
High performance is not a goal of I❤MESH. Instead, we aim for
the compiler to produce backend code sufficient for prototyping,
and ideally with reasonable scaling characteristics. Users can use
I❤MESH to quickly explore potential approaches; the generated
code can be subsequently optimized by hand if users wish. Our ex-
amples run in a few seconds (normals, curvature, winding number,
geodesic distance, mass-spring) to minutes (bilateral filtering, pa-
rameterization, deformation). Of the lengthier examples, all but de-
formation take < 20 seconds per iteration.

We evaluated the basic scaling of I❤MESH bymeasuring the cost
of finding a vertex’s vertex neighbors (|𝜕1 | |𝜕1 |⊤𝑣), which should
run in constant time (on average). 3 We found two𝑂 (𝑛) confounders
in our naive expression. First, sparse matrix · sparse vector multi-
plication should only be constant-time with compressed column
matrix storage (CSC). Since the default storage order is CSC, this
computation involving the transposed matrix · vector product uses,
in effect, compressed row format (CSR). Storing a copy of the trans-
posed boundary matrices prevents this. This can be easily done in
H❤ rtLang itself. Second, without parentheses, the generated code
may compute a matrix · matrix product followed by a matrix · vec-
tor product. Inserting parentheses prevents this, as in |𝜕1 | ( |𝜕1 |⊤𝑣).

3A manifold mesh vertex has, on average, six neighbors. For this experiment, we used
a 𝑘-NN mesh with 𝑘 = 6.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:12 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

Gaussian curvature Mean curvature

Polygon Mesh Triangle Mesh

Angle-weighted vertex normals

polygon_normal.hlang/vertex_normal.hlang:

vertex_normal.hlang:

Gaussian curvature normals Mean curvature normals

Point cloud normals (unoriented)

Bilateral Filtering

front back

A!er 10 iterations

Input triangle mesh

Generalized Winding Number

Input triangle mesh Generalized winding number values inside the
convex hull’s constrained Delaunay tesselation

Fig. 6. Results implemented using I❤MESH. See Section 7 for details. See the supplemental material for the complete source code.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



I❤MESH: A DSL for Mesh Processing • 0:13

Input Constraints

Exponential Symmetric Dirichlet

Geodesic Distance

Parameterization

Tetrahedral Mesh Deformation

Triangle Mesh

initial optimized

Symmetric Dirichlet

Conformal AMIPSAMIPS

Fig. 7. Results implemented using I❤MESH. See Section 7 for details. See the supplemental material for the complete source code.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.



0:14 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold
Ti

m
e 

(m
ill

is
ec

on
d)

0

75

150

225

300

Number of Vertices

0 250,000 500,000 750,000 1,000,000

Parentheses and Transpose 

Parentheses only

Transpose only

Original

Fig. 8. The average time for computing a per-vertex normal in different
conditions (Section 8.1). Parentheses signifies that the matrix-vector prod-
uct takes precedence and is performed before other operations. Transpose
refers to storing a pre-transposed boundary matrix for efficient sparse
matrix-vector multiplication.

We measured these performance improvements by computing per-
vertex normals for various 𝑘 = 6 nearest-neighbor point clouds
with our C++/Eigen backend. Figure 8 plots the time to compute
a single vertex’s normal in each condition for meshes with vary-
ing numbers of vertices (up to 1 million). Each measurement was
obtained by computing 100 normals for each input, repeated 10
times, and then averaging. As shown, the largest improvement is
due to avoiding the matrix-matrix multiplication with appropriate
parentheses. There is no performance improvement from using the
stored CSC transpose when performing matrix-matrix multiplica-
tion, because efficient matrix-matrix multiplication requires con-
verting one side to CSR format and the other to CSC.The linear con-
founding factor from “transposed-matrix” · vector multiplication is
comparatively smaller. With both modifications, performance ap-
pears virtually constant, though we objectively measured a small
remaining linear factor (4×10−6 milliseconds per mesh vertex). For
comparison, computing point cloud normals in the same way us-
ing hand-written C++ takes 0.004 ms versus 7 ms per vertex. (The
C++ implementation used pre-computed vertex adjacency stored
in arrays.) We have found it relatively straightforward to express
neighborhood functions with boundary matrices and element sets.
However, it is not always easy to maintain optimal complexity.

While not a goal, this experiment points to the potential for the
I❤LA compiler to drastically improve performance via a small set
of standard optimizations such as common subexpression elimina-
tion. One direction worth pursuing is generating code for high-
performance languages like MeshTaichi [Yu et al. 2022] and Halide
[Ragan-Kelley et al. 2013]. We would also like to add source-to-
source automatic differentiation support to H❤ rtLang. This would
eliminate a dependency from the generated code and avoid the high
runtime cost.

8.2 Authoring Support
In the spirit of experimentingwithmesh expressions, wewould like
to explore automatic generation of mathematical illustrations. We
envision illustrations similar to and leveraging Penrose [Ye et al.
2020] by displaying a mesh annotated with expressions from the
I❤MESH code.Wewould also like to integrate I❤MESHwithH❤ rt-
Down [Li et al. 2022] to create a notebook-like playground for ex-
perimenting with mesh expressions. I❤MESH provides support for
the discrete mesh expressions commonly written in geometry pro-
cessing papers. Many papers also include a continuous formulation
of their problem and solution. A future language could allow au-
thors to express the continuous version of their problem, while se-
lecting which I❤MESH discretization to use to implement it.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their suggestions.
Alec Jacobson was supported in part by the Sloan Foundation and
theCanada ResearchChairs Program. KeenanCranewas supported
in part by the David and Lucile Packard Foundation, NSF awards
1943123 and 2212290, and gifts from Meta Reality Labs and Google,
Inc. Yotam Gingold was supported in part by a gift from Adobe Inc.

REFERENCES
Samer Alhaddad, Jens Förstner, Stefan Groth, Daniel Grünewald, Yevgen Grynko,

Frank Hannig, Tobias Kenter, Franz-Josef Pfreundt, Christian Plessl, Merlind
Schotte, Thomas Steinke, Jürgen Teich, Martin Weiser, and Florian Wende. 2022.
The HighPerMeshes framework for numerical algorithms on unstructured grids.
Concurrency and Computation: Practice and Experience 34, 14 (2022), e6616.

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Suky-
oung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, and
others. 2005. The Fortress language specification. SunMicrosystems 139, 140 (2005).

Martin S. Alnæs, Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N.
Wells. 2014. Unified form language: A domain-specific language for weak formula-
tions of partial differential equations. ACM Trans. Math. Software 40, 2 (Feb. 2014),
1–37. https://doi.org/10.1145/2566630

David Baraff and AndrewWitkin. 1998. Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques. 43–
54.

Igor A. Baratta, Joseph P. Dean, Jørgen S. Dokken, Michal Habera, Jack S. Hale, Chris N.
Richardson, Marie E. Rognes, Matthew W. Scroggs, Nathan Sime, and Garth N.
Wells. 2023. DOLFINx: the next generation FEniCS problem solving environment.
preprint. https://doi.org/10.5281/zenodo.10447666

Bruce G Baumgart. 1972. Winged edge polyhedron representation. Technical Report.
STANFORD UNIV CA DEPT OF COMPUTER SCIENCE.

Gilbert Louis Bernstein and Fredrik Kjolstad. 2016. Perspectives: why new program-
ming languages for simulation? ACM Transactions on Graphics (TOG) 35, 2 (2016),
1–3.

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for physical simulation
on CPUs and GPUs. ACM Transactions on Graphics (TOG) 35, 2 (2016), 1–12.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A fresh
approach to numerical computing. SIAM review 59, 1 (2017), 65–98.

Botsch Steinberg Bischoff, M Botsch, S Steinberg, S Bischoff, L Kobbelt, and Rwth
Aachen. 2002. OpenMesh–a generic and efficient polygon mesh data structure. In
In OpenSG Symposium.

Jose Luis Blanco and Pranjal Kumar Rai. 2014. nanoflann: a C++ header-only fork of
FLANN, a library for Nearest Neighbor (NN) with KD-trees. https://github.com/
jlblancoc/nanoflann.

Camille Brunel, Pierre Bénard, and Gaël Guennebaud. 2021. A time-independent de-
former for elastic contacts. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–14.

Luciano A Romero Calla, Lizeth J Fuentes Perez, and Anselmo A Montenegro. 2019.
A minimalistic approach for fast computation of geodesic distances on triangular
meshes. Computers & Graphics 84 (2019), 77–92.

Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. 1998. Directed edges—a scalable
representation for triangle meshes. Journal of Graphics tools 3, 4 (1998), 1–11.

Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless
parametrization with arbitrary cones for arbitrary genus. ACM Transactions on

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.

https://doi.org/10.1145/2566630
https://doi.org/10.5281/zenodo.10447666
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann


I❤MESH: A DSL for Mesh Processing • 0:15

Graphics (TOG) 39, 1 (2019), 1–19.
Prashanth Chandran, Loïc Ciccone, Markus Gross, and Derek Bradley. 2022. Local

anatomically-constrained facial performance retargeting. ACM Transactions on
Graphics (TOG) 41, 4 (2022), 1–14.

Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Dig-
ital Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH
2013 courses (Anaheim, California) (SIGGRAPH ’13). ACM, New York, NY, USA,
126 pages.

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von
Raumer. 2015. The Lean theorem prover (system description). In International Con-
ference on Automated Deduction. Springer, 378–388.

Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Med-
ina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy, et al.
2011. Liszt: a domain specific language for building portable mesh-based PDE
solvers. In Proceedings of 2011 international conference for high performance com-
puting, networking, storage and analysis. 1–12.

Antonio DiCarlo, Alberto Paoluzzi, and Vadim Shapiro. 2014. Linear algebraic repre-
sentation for topological structures. Computer-Aided Design 46 (Jan. 2014), 269–274.
https://doi.org/10.1016/j.cad.2013.08.044

Herbert Edelsbrunner. 1999. Simplicial Complexes. Technical Report. https://people.
eecs.berkeley.edu/~jrs/meshpapers/edels/L-06.pdf

Herbert Edelsbrunner and John Harer. 2008. Computational Topology: An Introduction.
Sharif Elcott and Peter Schröder. 2005. Building Your Own DEC at Home. In ACM

SIGGRAPH 2005 Courses (SIGGRAPH ’05). Association for Computing Machinery,
New York, NY, USA, 8–es. https://doi.org/10.1145/1198555.1198667 event-place:
Los Angeles, California.

Andreas Fabri and Sylvain Pion. 2009. CGAL:The computational geometry algorithms
library. In Proceedings of the 17th ACM SIGSPATIAL international conference on ad-
vances in geographic information systems. 538–539.

Shachar Fleishman, Iddo Drori, and Daniel Cohen-Or. 2003. Bilateral mesh denoising.
In ACM SIGGRAPH 2003 Papers. 950–953.

Greg Friedman. 2012. Survey article: an elementary illustrated introduction to simpli-
cial sets. The Rocky Mountain Journal of Mathematics (2012), 353–423.

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing locally injectivemappings
by advanced MIPS. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–12.

Brian Guenter. 2007. Efficient symbolic differentiation for graphics applications. In
ACM SIGGRAPH 2007 papers (SIGGRAPH ’07). Association for Computing Machin-
ery, New York, NY, USA, 108–es. https://doi.org/10.1145/1275808.1276512

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general
subdivisions and the computation of Voronoi. ACM transactions on graphics (TOG)
4, 2 (1985), 74–123.

Marc Habermann, Lingjie Liu,Weipeng Xu,Michael Zollhoefer, Gerard Pons-Moll, and
Christian Theobalt. 2021. Real-time deep dynamic characters. ACM Transactions
on Graphics (ToG) 40, 4 (2021), 1–16.

Allen Hatcher. 2002. Algebraic Topology. Cambridge University Press.
Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-

outside segmentation using generalized winding numbers. ACM Transactions on
Graphics (TOG) 32, 4 (2013), 1–12.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Doug L James. 2020. Phong deformation: a better C 0 interpolant for embedded defor-
mation. ACM Transactions on Graphics (TOG) 39, 4 (2020), 56–1.

Tomasz Kaczynski, Konstantin Michael Mischaikow, and Marian Mrozek. 2004. Com-
putational homology. Number v. 157 in Applied mathematical sciences. Springer,
New York.

Lutz Kettner. 1998. Designing a data structure for polyhedral surfaces. In Proceedings
of the fourteenth annual symposium on Computational geometry. 146–154.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro
Sueda, Desai Chen, Etienne Vouga, Danny M Kaufman, Gurtej Kanwar, Wojciech
Matusik, et al. 2016. Simit: A language for physical simulation. ACM Transactions
on Graphics (TOG) 35, 2 (2016), 1–21.

Michael Lange, Navjot Kukreja, Mathias Louboutin, Fabio Luporini, Felippe Vieira,
Vincenzo Pandolfo, Paulius Velesko, Paulius Kazakas, and Gerard Gorman. 2016.
Devito: Towards a generic Finite Difference DSL using symbolic Python. In 2016 6th
workshop on python for high-performance and scientific computing (PyHPC). IEEE,
67–75.

Soeren Laue. 2022. On the Equivalence of Automatic and Symbolic Differentiation.
http://arxiv.org/abs/1904.02990 arXiv:1904.02990 [cs].

Allan Leal. 2023. The autodiff library. https://autodiff.github.io.
Christian Lengauer, Sven Apel, Matthias Bolten, Shigeru Chiba, Ulrich Rüde, Jürgen

Teich, Armin Größlinger, Frank Hannig, Harald Köstler, Lisa Claus, et al. 2020. Ex-
astencils: advancedmultigrid solver generation. In Software for Exascale Computing-
SPPEXA 2016-2019. Springer International Publishing, 405–452.

Yong Li, Shoaib Kamil, Alec Jacobson, and YotamGingold. 2021. I Heart LA: Compilable
Markdown for Linear Algebra. ACM Transactions on Graphics (TOG) 40, 6 (Dec.
2021).

Yong Li, Shoaib Kamil, Alec Jacobson, and Yotam Gingold. 2022. HeartDown: Doc-
ument Processor for Executable Linear Algebra Papers. In ACM SIGGRAPH Asia
(Conference Papers). https://doi.org/10.1145/3550469.3555395

Pascal Lienhardt. 1994. N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. International Journal of Computational Geometry & Applications
4, 03 (1994), 275–324.

Ahmed HMahmoud, Serban D Porumbescu, and John DOwens. 2021. RXMesh: a GPU
mesh data structure. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1–16.

Martti Mäntylä. 1989. Advanced topics in solid modeling. In Advances in Computer
Graphics V. Springer, 49–74.

Nelson Max. 1999. Weights for computing vertex normals from facet normals. Journal
of graphics tools 4, 2 (1999), 1–6.

Robert Ryan McCune, Tim Weninger, and Greg Madey. 2015. Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph processing.
ACM Computing Surveys (CSUR) 48, 2 (2015), 1–39.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B Kir-
pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason KMoore, Sartaj Singh,
et al. 2017. SymPy: symbolic computing in Python. PeerJ Computer Science 3 (2017),
e103.

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr. 2003. Discrete
differential-geometry operators for triangulated 2-manifolds. In Visualization and
mathematics III. Springer, 35–57.

Niloy J Mitra and An Nguyen. 2003. Estimating surface normals in noisy point cloud
data. In Proceedings of the nineteenth annual symposium on Computational geometry.
322–328.

J. S. Mueller-Roemer, C. Altenhofen, and A. Stork. 2017. Ternary Sparse Matrix Rep-
resentation for Volumetric Mesh Subdivision and Processing on GPUs. Computer
Graphics Forum 36, 5 (Aug. 2017), 59–69. https://doi.org/10.1111/cgf.13245

D. E.Muller and F. P. Preparata. 1978. Finding the intersection of two convex polyhedra.
Theoretical Computer Science 7, 2 (Jan. 1978), 217–236. https://doi.org/10.1016/0304-
3975(78)90051-8

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2 (April 2017). https:
//doi.org/10.1145/2983621 Place: New York, NY, USA Publisher: Association for
Computing Machinery.

Jonathan Ragan-Kelley, Connelly Barnes, AndrewAdams, Sylvain Paris, FrédoDurand,
and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. Acm Sigplan
Notices 48, 6 (2013), 519–530.

Florian Rathgeber, David A Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini,
Andrew TTMcRae, Gheorghe-Teodor Bercea, Graham RMarkall, and Paul HJ Kelly.
2016. Firedrake: automating the finite element method by composing abstractions.
ACM Transactions on Mathematical Software (TOMS) 43, 3 (2016), 1–27.

Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant, David A
Ham, Carlo Bertolli, and Paul HJ Kelly. 2012. PyOP2: A high-level framework for
performance-portable simulations on unstructured meshes. In 2012 SC Companion:
High Performance Computing, Networking Storage and Analysis. IEEE, 1116–1123.

Patrick Schmidt, Janis Born, David Bommes, Marcel Campen, and Leif Kobbelt. 2022.
TinyAD: Automatic Differentiation in Geometry Processing Made Simple. In Com-
puter graphics forum, Vol. 41. Wiley Online Library, 113–124.

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-Surface
Mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870–877. https://doi.org/10.1145/
1015706.1015812 Place: New York, NY, USA Publisher: Association for Computing
Machinery.

Daniel Shapero. 2023. An Ergonomic Approach to Topological Transformations of
Unstructured Meshes. International Meshing Roundtable (Research Note) (2023).

Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle
Meshes. Computer Graphics Forum (SGP) 39, 5 (2020).

Nicholas Sharp, Keenan Crane, et al. 2019a. geometry-central. www.geometry-
central.net.

Nicholas Sharp, Mark Gillespie, and Keenan Crane. 2021. Geometry processing with
intrinsic triangulations. SIGGRAPH’21: ACM SIGGRAPH 2021 Courses (2021).

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019b. Navigating intrinsic trian-
gulations. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–16.

Daniel Sieger and Mario Botsch. 2019. The Polygon Mesh Processing Library.
http://www.pmp-library.org.

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–9.

Steven L Song, Weiqi Shi, and Michael Reed. 2020. Accurate face rig approxima-
tion with deep differential subspace reconstruction. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 34–1.

Oded Stein, Alec Jacobson, Max Wardetzky, and Eitan Grinspun. 2020. A smooth-
ness energy without boundary distortion for curved surfaces. ACM Transactions
on Graphics (TOG) 39, 3 (2020), 1–17.

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
Quasistatic Finite Elements and Flesh Simulation. In Proceedings of the 2005 ACM

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.

https://doi.org/10.1016/j.cad.2013.08.044
https://people.eecs.berkeley.edu/~jrs/meshpapers/edels/L-06.pdf
https://people.eecs.berkeley.edu/~jrs/meshpapers/edels/L-06.pdf
https://doi.org/10.1145/1198555.1198667
https://doi.org/10.1145/1275808.1276512
http://arxiv.org/abs/1904.02990
https://doi.org/10.1145/3550469.3555395
https://doi.org/10.1111/cgf.13245
https://doi.org/10.1016/0304-3975(78)90051-8
https://doi.org/10.1016/0304-3975(78)90051-8
https://doi.org/10.1145/2983621
https://doi.org/10.1145/2983621
https://doi.org/10.1145/1015706.1015812
https://doi.org/10.1145/1015706.1015812


0:16 • Yong Li, Shoaib Kamil, Keenan Crane, Alec Jacobson, and Yotam Gingold

SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’05). Association
for Computing Machinery, New York, NY, USA, 181–190. https://doi.org/10.1145/
1073368.1073394 event-place: Los Angeles, California.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. 2023.
Are large language models really good logical reasoners? a comprehensive evalua-
tion from deductive, inductive and abductive views. arXiv preprint arXiv:2306.09841
(2023).

Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,
Joshua Sunshine, and Keenan Crane. 2020. Penrose: from mathematical notation
to beautiful diagrams. ACM Transactions on Graphics (TOG) 39, 4 (2020), 144–1.

Chang Yu, Yi Xu, Ye Kuang, Yuanming Hu, and Tiantian Liu. 2022. MeshTaichi: A Com-
piler for Efficient Mesh-Based Operations. ACM Transactions on Graphics (TOG) 41,
6 (2022), 1–17.

Rhaleb Zayer, Markus Steinberger, and Hans-Peter Seidel. 2017. A GPU-Adapted Struc-
ture for Unstructured Grids. Computer Graphics Forum 36, 2 (May 2017), 495–507.
https://doi.org/10.1111/cgf.13144

Paul Zhang, Josh Vekhter, Edward Chien, David Bommes, Etienne Vouga, and Justin
Solomon. 2020. Octahedral frames for feature-aligned cross fields. ACM Transac-
tions on Graphics (TOG) 39, 3 (2020), 1–13.

A SOURCE CODE COMPARISONS
We implemented per-vertex mean curvature using I❤MESH, Simit,
Ebb, and MeshTaichi. Figure 9 displays the source code in each
language. Driver code is highlighted in green. Stencil code is high-
lighted in yellow. Mesh expressions are highlighted in pink.

ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.

https://doi.org/10.1145/1073368.1073394
https://doi.org/10.1145/1073368.1073394
https://doi.org/10.1111/cgf.13144


I❤MESH: A DSL for Mesh Processing • 0:17

1 using namespace simit;
2 int main(int argc, char **argv){
3 simit::init("cpu", sizeof(double));
4 Mesh mesh;
5 mesh.load("path/to/mesh");
6 Set points;
7 Set faces(points, points, points);
8 Set ds(points, points, faces, faces);
9 simit::FieldRef<double,3> x = points.addField<double,3>("x");

10 simit::FieldRef<double,3> fn = faces.addField<double,3>("fn");
11 simit::FieldRef<double> c = points.addField<double>("curvature");
12 std::vector<ElementRef> pr;
13 for(auto vertex : mesh.v) {
14 ElementRef point = points.add();
15 pr.push_back(point);
16 x.set(point, vertex);
17 }
18 typedef std::pair<std::tuple<int, int>, int> key_pair;
19 std::map<std::tuple<int, int>, int> f_map;
20 std::vector<ElementRef> fr;
21 int index = 0;
22 for(auto t : mesh.t) {
23 ElementRef face = faces.add(pr[t[0]], pr[t[1]], pr[t[2]]);
24 fr.push_back(face);
25 for (int i = 0; i < 3; ++i) {
26 f_map.insert(key_pair(std::make_tuple(t[i], t[(i+1)%3]), index));
27 auto s = f_map.find(std::make_tuple(t[(i+1)%3], t[i]));
28 if (s != f_map.end()) {
29 ds.add(pr[t[i]], pr[t[(i+1)%3]], fr[index], fr[s->second]);
30 ds.add(pr[t[(i+1)%3]], pr[t[i]], fr[s->second], fr[index]);
31 }
32 }
33 index++;
34 }
35 Program program;
36 program.loadFile("path/to/curvature.sim");
37 Function cal = program.compile("compute_curvature");
38 cal.bind("verts", &points);
39 cal.bind("faces", &faces);
40 cal.bind("diamonds", &ds);
41 cal.init();
42 cal.runSafe();
43 return 0;
44 }

C++ code

1 element Vert
2 x : vector[3](float);
3 curvature : float;
4 end
5
6 element Face
7 fn : vector[3](float);
8 end
9

10 element Diamond
11 end
12
13 extern verts:set{Vert};
14 extern faces : set{Face}(verts,verts,verts);
15 extern diamonds : set{Diamond}(verts, verts, faces, faces);
16
17 func face_normal(inout s: Face, inout p : (Vert*3))
18 s.fn = cross(p(1).x - p(0).x, p(2).x - p(0).x);
19 end
20
21 func angle(inout d: Diamond, inout q:(v1:Vert,v2:Vert,f1:Face,f2:Face))
22 var len = norm(q.v2.x - q.v1.x);
23 var e = (q.v2.x - q.v1.x)/len;
24 var t = atan2(dot(e, cross(q.f1.fn,q.f2.fn)), dot(q.f1.fn,q.f2.fn));
25 q.v1.curvature = q.v1.curvature + len * t / 4.0;
26 end
27
28 export func compute_curvature()
29 apply face_normal to faces;
30 map angle to diamonds;
31 end

Simit code
(a) Simit

1 ti.init(arch=getattr(ti, 'cpu'))
2 mesh = Patcher.load_mesh("/path/to/mesh", relations=['FV', 'VF', 'VV'])
3 mesh.verts.place({'x' : ti.math.vec3, 'curvature' : ti.f32})
4 mesh.verts.x.from_numpy(mesh.get_position_as_numpy())
5 @ti.kernel
6 def vertex_mean_curvature():
7 ti.mesh_local(mesh.verts.x, mesh.verts.curvature)
8 for v in mesh.verts:
9 for neighbor in v.verts:

10 n1 = ti.Vector([0.0, 0.0, 0.0])
11 n2 = ti.Vector([0.0, 0.0, 0.0])
12 for f in v.faces:
13 if f.verts[0].id == v.id and f.verts[1].id == neighbor.id:
14 n1 = (neighbor.x - v.x).cross(f.verts[2].x - v.x)
15 elif f.verts[1].id == v.id and f.verts[2].id == neighbor.id:
16 n1 = (neighbor.x - v.x).cross(f.verts[0].x - v.x)
17 elif f.verts[2].id == v.id and f.verts[0].id == neighbor.id:
18 n1 = (neighbor.x - v.x).cross(f.verts[1].x - v.x)
19 elif f.verts[0].id == neighbor.id and f.verts[1].id == v.id:
20 n2 = (v.x - neighbor.x).cross(f.verts[2].x - neighbor.x)
21 elif f.verts[1].id == neighbor.id and f.verts[2].id == v.id:
22 n2 = (v.x - neighbor.x).cross(f.verts[0].x - neighbor.x)
23 elif f.verts[2].id == neighbor.id and f.verts[0].id == v.id:
24 n2 = (v.x - neighbor.x).cross(f.verts[1].x - neighbor.x)
25 len = (neighbor.x - v.x).norm()
26 e = (neighbor.x - v.x)/len
27 alpha = ti.math.atan2(e.dot(n1.cross(n2)), n1.dot(n2))
28 v.curvature += alpha * len / 4
29 vertex_mean_curvature()

(c) MeshTaichi

1 -- adapted from ebb/domains/trimesh.t
2 ... copied lines omitted ...
3 local EdgeFlapMesh = {}
4 function EdgeFlapMesh:build_edges(vs)
5 ... copied lines omitted ...
6 for i = 1, mesh:nTris() do
7 neighbors[vs[i][1]+1][vs[i][2]+1] = i-1
8 neighbors[vs[i][2]+1][vs[i][3]+1] = i-1
9 neighbors[vs[i][3]+1][vs[i][1]+1] = i-1

10 end
11 ... copied lines omitted ...
12 local e_face = {}
13 local e_indices = {}
14 local e_dual = {}
15 for k = 1, mesh:nVerts() do e_indices[k] = {} end
16 for i = 1, mesh:nVerts() do
17 for j,_ in pairs(neighbors[i]) do
18 ... copied lines omitted ...
19 table.insert(e_face, neighbors[i][j])
20 e_indices[i][j] = n_edges
21 n_edges = n_edges + 1
22 end
23 end
24 for i = 1, mesh:nVerts() do
25 for j,_ in pairs(neighbors[i]) do
26 table.insert(e_dual, e_indices[j][i])
27 end
28 end
29 ... copied lines omitted ...
30 mesh.edges:NewField('face', mesh.triangles):Load(e_face)
31 mesh.edges:NewField('dual', mesh.edges):Load(e_dual)
32 ... copied lines omitted ...
33 end
34
35 -- adapted from ebb/domains/ioOff.t
36 function EdgeFlapMesh.LoadEdgeFlapMesh(path)
37 ... copied lines omitted ...
38 return EdgeFlapMesh.LoadFromLists(position_data_array,tri_data_array)
39 end

EdgeFlapMesh.t

1 import "ebb"
2 local L = require "ebblib"
3 local ioOff = require "ebb.domains.ioOff"
4 local PN = require "ebb.lib.pathname"
5 local EdgeFlapMesh = require 'EdgeFlapMesh'
6 local mesh = EdgeFlapMesh.LoadEdgeFlapMesh("path/to/mesh")
7 mesh.vertices:NewField('mean_curvature', L.double)
8 mesh.triangles:NewField('n', L.vec3d)
9 local ebb compute_normal ( t : mesh.triangles )

10 t.n = L.cross(t.v[1].pos - t.v[0].pos, t.v[2].pos - t.v[0].pos)
11 end
12 local ebb vertex_mean_curvature ( v : mesh.vertices )
13 for e in v.edges do
14 var neighbor = e.head
15 var f1 = e.face
16 var f2 = e.dual.face
17 var len = L.length(neighbor.pos - v.pos)
18 var e = (neighbor.pos - v.pos)/len
19 var cur = atan2(L.dot(e, L.cross(f1.n, f2.n)), L.dot(f1.n, f2.n))
20 v.mean_curvature += cur * len / 4
21 end
22 end
23 mesh.triangles:foreach(compute_normal)
24 mesh.vertices:foreach(vertex_mean_curvature)

curvature.t
(b) Ebb

1 atan2 from trigonometry
2 ElementSets from MeshConnectivity
3 VertexOneRing, OrientedVertices, EdgeIndex from Neighborhoods(M)
4 M : FaceMesh
5 x_i ∈ ℝ^3
6 V, E, F = ElementSets( M )
7
8 N(f) = ((x_j- x_i)×(x_k-x_i))/(‖(x_j-x_i)×(x_k-x_i)‖) where f ∈ F,
9 i,j,k = OrientedVertices(f)

10
11 l_i,j = ‖x_j - x_i‖ where i,j ∈ V
12
13 ϕ_i,j = atan2(e⋅(`n_1`×`n_2`), `n_1`⋅`n_2`) where i, j ∈ V,
14 e = (x_j-x_i)/‖x_j-x_i‖,
15 `f_1`, `f_2` = OrientedOppositeFaces(i, j),
16 `n_1` = N(`f_1`),
17 `n_2` = N(`f_2`)
18
19 H(i) = 1/4 ∑_(j ∈ VertexOneRing(i)) l_ij ϕ_ij where i ∈ V
20
21 `∂⁰`, `∂¹` = BoundaryMatrices(M)
22 OrientedOppositeFaces(i, j) = tuple(f1_1, f2_1) where i,j ∈ V,
23 e = EdgeIndex(i, j), fs = Faces(e),
24 f1 = { f for f ∈ fs if `∂¹`_e,f `∂⁰`_i,e = -1 },
25 f2 = fs - f1

I❤MESH code

1 int main(int argc, const char * argv[]) {
2 Eigen::MatrixXd meshV;
3 Eigen::MatrixXi meshF;
4 igl::readOBJ("path/to/mesh", meshV, meshF);
5 TriangleMesh triangle_mesh;
6 triangle_mesh.initialize(meshF);
7 FaceMesh face_mesh(triangle_mesh.bm1, triangle_mesh.bm2);
8 std::vector<Eigen::Matrix<double, 3, 1>> P;
9 for (int i = 0; i < meshV.rows(); ++i) {

10 P.push_back(meshV.row(i).transpose());
11 }
12 heartlib ihla(face_mesh, P);
13 std::vector<double> mean_curvature(meshV.rows());
14 for (int i = 0; i < meshV.rows(); ++i) {
15 mean_curvature[i] = ihla.H(i);
16 }
17 }

C++ code
(d) I❤MESH

Fig. 9. Source code comparisons of vertex mean curvature. See Section 5 for a discussion.
ACM Trans. Graph., Vol. 0, No. 0, Article 0. Publication date: 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Boundary Matrices

	4 Programming Model and Language Design
	4.1 Architectural Layers
	4.2 Semantics of Architectural Layers
	4.3 HI[height=1.1]hearts/unicode-redrtLang Improvements

	5 DSL comparisons
	6 Implementation
	7 Results
	8 Observations, Limitations, and Future Work
	8.1 Performance
	8.2 Authoring Support

	Acknowledgments
	References
	A Source code comparisons

